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Preface

Handbook on sampling design and estimation methods for economic data collection in fisheries statistics was
produced under the EU funded project SECFISH: Socio-economic data collection for fisheries, aquaculture and
the processing industry (EU Call for Proposals Mare 2016/22: Strengthening regional cooperation in the area of
fisheries data collection). The Work Package 2 is aimed at harmonizing the methodologies of sampling design
and estimation methods by providing a practical manual based on the general theory of probability sampling.
The handbook can be used by the Member States as supporting guidelines in economic data production.

The handbook explains the general principles of probability sampling and essential requirements for a good
quality survey plan, and covers the basic sampling techniques. Description of each design will be accompanied by
the explanation of appropriate methods of estimation, as well as, uncertainty assessment leading to a well-based

coefficient of variation.

The handbook has been produced by a team of contributors including Juha Heikkinen, Jarmo Mikkola, Heidi
Pokki and Jarno Virtanen of Natural Resources Institute Finland, Evelina Sabatella of NISEA, and Risto
Lehtonen of University of Helsinki (main author).
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1 Introduction

Summary. The handbook focuses on practical sampling and estimation methods for fixed and finite populations
of identifiable units (elements) under the conventional design-based framework. This framework is common in
survey statistics in general and also in fisheries statistics. We discuss and demonstrate tools for the planning and
implementation of sampling designs and estimation designs that would be statistically valid for proper inference
and technically manageable for a given fisheries survey.

Auxiliary information on the population plays a crucial role. By introducing suitable auxiliary information in the
sampling and estimation procedures, statistical efficiency and cost efficiency can be managed and improved in a
controlled way. Data on auxiliary variables are assumed available, either at the unit level in the sampling frame
(for certain sampling designs) or as aggregates taken from reliable sources, such as official statistics (for certain
estimation designs). Statistical models are used as assisting tools when appropriate.

Traditional methods for element sampling are discussed: simple random sampling, systematic sampling, PPS
sampling and stratified sampling. Cluster sampling and multi-stage designs are not treated in detail. For
estimation of population parameters we discuss traditional methods including Horvitz-Thompson or expansion
estimators and model-free calibration techniques as well as commonly used model-assisted methods, such as
ratio and regression estimation and post-stratification. For the treatment of missing data we discuss imputation
methods for item nonresponse and reweighting methods for unit nonresponse. Two case studies are presented,
one for Italy and the other for Finland. The case studies represent different but manageable approaches for
sampling and estimation in fisheries statistics.

The methods are illustrated with extensive worked examples under a realistic synthetic population by using
sampling and estimation procedures for samples of different sizes. The results are evaluated with small
simulation experiments. General methodological conclusions are provided as well as brief guidelines for practical
application.

Computation tools (SAS and R) are briefly summarized in the annexes. SAS and R codes and data sets for
worked examples in Chapters 3, 4 and 5 are made available together with the handbook on data collection
website.



2 General concepts

2.1. Census versus sample survey

The general term survey refers to a query that is used to collect data for making inferences on a population of
interest. The data collection method can vary. Sometimes the survey might be directed to entire population
(census survey), but in most cases the data are collected from a share of the population (sample survey). Often the
population information is obtained from a register (register-based survey). Survey might also be executed in the
internet (web survey). In survey practice, combinations of different approaches are often used. For example, in a
combined sample survey and register survey, a part of data are collected with a sample survey and additional
information is taken from registers. This option is becoming increasingly common in fisheries statistics.

In most cases, sufficient resources are not available for a complete census. A carefully designed sample study
would provide results that are accurate enough for practical purposes. In order to be able to generalize the
sample results to the population, the sampling and estimation procedures should be based on well-established
statistical methodologies. Survey sampling methods provide tools for cost-efficient and manageable ways to
execute the sampling and estimation procedures. This handbook presents several approaches and methods as
well as practical applications for surveys in fisheries statistics.

2.2 Target population and sampling frame

Target population contains all the units or elements that we are interested in, whereas the sampling population includes
only those units that could actually be drawn into a sample. It often happens that all of the units of the target
population cannot be reached, for example due to missing contact information. Sampling frame, therefore,
contains only those units of the sampling population that can possibly be drawn into a sample. The sampling
frame is said to have over-coverage when it contains units that do not belong to the target population. The opposite
case, under-coverage, is probably more common, referring to the case where the frame does not contain all intended
target population units. Both quality deficiencies of the sampling frame can cause biased results and therefore
require careful examination and cleaning if necessary, before the implementation of the sampling operations.

The sampling frame consists of zdentifiable units that are attached with unique /abels, for example the identification
code of a registered fishing vessel or the PIN of a person. ID codes allow population units to be sampled and
contacted for data collection. By using identification codes, information can be extracted from registers and
other sources and merged with records of the sampling frame, to be used in sampling and estimation procedures.

Important additional variables of the sampling frame are fechnical variables Z that are related to the sampling
method of the survey. These include variables determining the probability of population unit to be sampled and
stratum and cluster membership identifiers, and variables carrying information on sizes of population elements
for unequal probability sampling methods.

In fisheries statistics, a sample of fishing vessels is often drawn directly from the sampling frame that covers the
intended population of vessels. Formally, a frame population is denoted U = {1, ..., k, ..., N }, ithas N
identifiable elements. In this handbook, the frame population SIMPOP consists of N = 120 vessels. SIMPOP is
an artificially generated population but realistic enough for illustrating the methods of the handbook.

The population of vessels may be readily grouped into naturally existing sets called c/usters. For example, a
fisheries enterprise can manage several fishing vessels. A possible sampling scenario is to draw first a sample of
enterprises or clusters from a sampling frame of enterprises. Then, all eligible vessels of the sample enterprises
may constitute the element sample, leading to one-stage cluster sampling. For sampling of vessels, an element-
level sampling frame is not needed. The element frame is needed if samples of vessels are to be drawn from the
sampled enterprises, leading to two-stage cluster sampling. Another possible scenario is to first draw a sample of
harbors from the population of target harbors and take all eligible vessels from the sample harbors in the
element sample. Sampling frame for drawing a sample of harbors is needed.

Cluster sampling typically weakens statistical efficiency relative to element-level sampling, because clusters tend

to be internally homogeneous with respect to the phenomenon of interest. Sampling from element-level frames
is thus advisable. This approach has been adopted in the handbook. In some situations, cluster sampling may be
justified for cost-efficiency reasons.



2.3 Survey variables and population parameters

The information of primary interest attached to the units of target population is denoted with the values of szudy
ot target variable Y i.e. {y1, ..., Vi, ..., ¥n }. The values y, are the unknown values of the target variable. The survey
is catried out to obtain measurements for Y, or several target variables, for elements k € s of the sample s that
has been drawn from the frame population. Assuming error-free measurement, we denote by Yy, the sample
values of Y.

In addition to the target vatiable Y and the technical vatiables Z, the survey may include information on auxiliary
variables ot covariates X . Auxiliary information refers to the information on the population that is not of primary
interest in the survey but can be useful for efficient sampling and estimation procedures. In general, for the
auxiliary variables to be useful their values should be available for the sampled units. Some methods require
population or subpopulation totals of the auxiliary variables, while other methods require their values for all units
in the population. In the latter case, it is advisable to include the auxiliary variables in the frame population.

The aim of survey is to estimate the unknown values of population parameters, which in general are functions of the
population values Y, of the target variable. Estzmators of population parameters are functions of the sample
values of Y, the technical variables Z and the possible auxiliary variables X. Various types of estimators, i.c.

computational algorithms, for the estimation of the population parameters of interest are discussed in the
handbook.

In the handbook, we mainly consider estimation of pgpulation total, the sum of the values of the target variable
over all units of the population, given by:

t =N Yk (1)

Consider, for example, the population of all registered fishing vessels in a country, and let Y, be the value of
landings of vessel k over a year, say. Then the parameter t is the total value of the landings in the country during
the year. Estimation of totals over subpopulations (domzains, e.g., certain type of vessels or fishing) will also be
discussed.

Population totals are often more meaningful than population means y = t/N. For example, the mean value of
landings per vessel depends heavily on the distribution of the vessel size and fishing effort. In comparisons
between countries, it might then be more relevant to compare the total value of landings divided by the total
costs, rather than divided by the number of vessels.

2.4. Probability sampling and inference

In probability sampling, a.k.a. random sampling, each unit in the population has a known positive inclusion
probability (probability to be selected into a sample) 7. The probabilistic nature of random samples guarantees
valid statistical inference i.e. the generalization of the results to the target population by computing standard
errors and confidence intervals for the estimators. Random sampling must be separated from non-probabilistic
methods such as quota sampling, where there is no basis for proper statistical inference. We discuss in the
handbook exclusively methods for probability sampling.

The collection of the rules and techniques used in the selection of a sample is referred to as a sampling scheme.
Under a sampling scheme the probability of selection p(s) can be attached to each sample s € U i.e. subset of
the population. The function p(-) is formally called the sampling design.

In the classical randomization ot design-based inference, the values of the variable of interest Y in the population are
regarded as fixed but unknown quantities. The only source of randomness is the sampling design. Design-based
properties such as design expectation and variance of an estimator are evaluated under hypothetical repeated
sampling by a given sampling design from the fixed population. We will examine these properties empirically for
some estimators of totals by small-scale design-based simulation experiments.



2.5 Estimation of population parameters

In sample surveys, the unknown value of the population parameter of interest, such as total, is estimated by
using the observed sample values of target variable under the chosen sampling design and estimation design.
Estimation design is characterized by the structure of an estimator, including the way how auxiliary information is
incorporated in the estimation procedure. In the handbook, a combination of sampling design and estimation
design is called strategy.

Point estimation. For population total t = YN, yy, a common general purpose estimation design is provided
by the Horvitz-Thompson estimator (expansion estimator), given as

£HT = Yk=1WkVk = Xk=1Yk/Tk 2

whete sampling weights ot design weights wy, are defined as inverses of inclusion probabilities, i.e. wy = 1/m, for
sample element k. In HT estimation, information on the sampling design is incorporated in the estimation
procedure by sampling weights. Calibration estimator of total, given by

£CAL = V=1 WeaLkYk> 3

is another general purpose estimation design. In CAL estimation, information on sampling and estimation
designs is incorporated in the estimation procedure by a combined element weight Wgsp x = Wi X gi, where
wy = 1/my is sampling weight and the sample-dependent weights gy, are specific for each calibration estimator.
All model-assisted estimators for total discussed in the handbook can be expressed in the form (3).

HT estimator for population total is design unbiased: the design expectation of the estimator equals the true
parameter value. All calibration estimators as well as model-assisted estimators of total considered in the
handbook are design consistent, their design bias and variance tend to zero as the sample size increases. The most
important of these estimators are nearly design unbiased, which is a favorable property of an estimator. The design
bias of the estimator is an asymptotically insignificant contribution to its mean squared error (MSE). MSE is
defined as the sum of design variance and squared bias of estimator.

Quality indicators. The degree of uncertainty attached to an estimated total is measured by design variance
Vo(s) () of an estimator ¢ of a total, defined under a given sampling design and estimation design. Design
variance is an unknown parameter and must be estimated from the sample. An estimator ﬁp(s) () of design

variance of £ also depends on the applied strategy. Standard error of T is defined as square root of the design
variance and is estimated by

s.e(t) = /ﬁp(s) ®. @

Coefficient of variation of total estimate is defined as

a s.e(t)
ev(®) =22, )
often expressed as a percentage. Coefficients of variation are routinely used in official statistics when assessing
the precision quality of estimates for publication.

Design effect of total estimator £ is used in surveys to assess the efficiency of a strategy relative to a reference
strategy, expressed as

Vp(s) (@)
Vsrs(Enr)’

DEFE,(f) = ©)

where Vp (s (f) is the design variance of estimator £ under the actual sampling design and Vggs(€y7) is the design
variance of the HT estimator £y under the reference sampling design, usually simple random sampling without
replacement. An estimator of DEFF is constructed by using the sample counterparts of the design variances and
can be written as

deffp(s) (f) =

1A’ID(S) ®
tsrs(EaT)
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The estimator ¢ of the total in the numerator variance expression may differ from that in the reference variance
formula, as is the case for calibration and model-assisted estimators.

By definition, if the def f is smaller than one, the actual strategy is more efficient than the reference strategy
SRSWOR_HT, where sampling is with simple random sampling without replacement and estimation relies on
the HT estimator. If def f = 1 then the actual and reference strategies are equally efficient. In cluster sampling,
design effects are usually larger than one. One of the main aims of the handbook is to introduce sampling and
estimation designs that attain improved efficiency over the SRSWOR_HT strategy.

2.6 Estimation for population subgroups

Estimates are often required for important population subgroups such as regional areas in a country or different
vessel or fishing types. It is advisable to define the most important subpopulations as s#afa in the sampling
design by using stratified sampling (see Section 3.6). Domains that are defined as strata are called planned domains
and they are considered as independent subpopulations, and a separate sample is drawn from each of them.
Sample sizes ng in planned domains are usually fixed by the sampling design. Domain estimates and their
associated quality indicators can be readily obtained by methods of the handbook applied separately for each
subpopulation.

Subpopulations of interest that are not specified in advance but emerge after sampling and data collection are
called unplanned domains and are denoted Uy, d = 1, ..., D, where D is the number of domains. Unplanned
domains are usually non-ovetlapping subgroups of the population not related to the sampling design. A single n
element sample has been drawn, and sample sizes 14 for domains are not controlled by the sampling design but
are random quantities such that Zgzl ng = n, the overall sample size. Sample sizes in some domains can be
small (even zero) and special techniques of swall area estimation may be needed.

The random nature of domain sample sizes affects inference. Formally, there are two different approaches for
inference for unplanned domains. In an wnconditional approach, inference is based on hypothetical repeated
sampling with sampling design p(s) such that the overall sample s of n elements is allowed to distribute
randomly over domain samples S € s,d = 1, ..., D. Thus, all possible domain sample configurations are
considered when averaging over variations in domain sample size, including configurations that did not occur. In
the conditional approach, the procedure is conditional given the observed configuration of the 1 element sample §
into domain samples Sg. Thus, only samples whose domain sample sizes correspond to the observed domain
sample sizes are considered.

The inferential approach together with the chosen sampling and estimation designs affects the estimation.
Typically, variances of total estimators under the unconditional approach tend to be larger than those of the
conditional approach. The situation is similar as in post-stratification.

In practice, point and variance estimators for unplanned domains under the unconditional approach can be
constructed by using extended domain variables defined as Yq, = yy if k € Uy and zero otherwise. The population
total in domain d can thus be expressed as tg = Y-y Yak, d = 1, ..., D. For example, Horvitz-Thompson
estimator (2) of domain total 4 for domain d takes the form

tanr = Xi=1WkYak = 2k=1Yar/Tk - ®

For variance estimation of £z under the unconditional approach, the extended domain variable values ygy, are
inserted in variance expressions instead of the original values yy. In the conditional approach, where domain
sample sizes are considered fixed and the domains are treated as independent subpopulations, the original values
Vi are used in variance formulas. Instead of HT estimation, various model-assisted and calibration methods can
be used, such as ratio estimation and post-stratification.

Design-based estimation for domains is discussed for example in Lehtonen & Veijanen (2009). Hidiroglou &
Patak (2004) compared the conditional and unconditional approaches for various estimators of totals for
unplanned domains. Some of the pioneering authors in the area, e.g. Durbin (1969) and Holt and Smith (1979),
as well as more recent contributors (e.g. Sirndal et al. 1992) favoured the conditional approach of inference for
unplanned domains.
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We demonstrate in sections 3.3.5 and 4.2.4 the various approaches for the estimation of domain totals and their
design variances in connection to simple random sampling, HT estimation and post-stratification by using tools
available in SAS survey programs.
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3 Basic sampling methods

3.1 Sampling designs

Basic sampling designs for surveys can be divided into methods for element sampling and methods for multi-
stage sampling, where the latter group consists of combinations of element sampling methods. A selection of
methods is listed and characterized in Table 3.1.

Table 3.1 Basic sampling designs for sampling from finite populations.

Basic sampling designs

Auxiliary data needed in sampling
frame

Level and source of auxiliary
data

A. Element sampling

Egqual probability sampling designs

(1) Simple random sampling SRS

Element identification variable

(2) Systematic sampling SYS

Element identification variable

Implicit stratification: Sorting variable

Unit-level
Sampling frame

Unegual probability sampling designs

(3) Sampling with probability
proportional to size PPS

Element identification variable

Size measure variable for elements

(4) Balanced sampling

Element identification variable

Balancing variables

Unit-level

Sampling frame

(5) Stratified sampling STR

Element /cluster identification variable

Stratification variables (categorical)

Optimal and power allocation: Additional
auxiliary information needed

Element sampling: Unit-level
Cluster sampling: Cluster level
Sampling frame

B. Multi-stage cluster sampling

(6) One-stage cluster sampling with
SRS or SYS

Cluster identification variable

(7) One-stage cluster sampling with
PPS

Cluster identification variable

Size measure for clusters

(8) Stratified one-stage cluster
sampling

Cluster identification variable

Stratification variables for clusters

Cluster level

Sampling frame for clusters

(9) Stratified two-stage (multi-stage)
cluster sampling

Cluster identification variable
Stratification variables for clusters

Element identification variable for sample
clusters

Cluster level
Sampling frame for clusters

Sampling frame for elements in
sample clusters

The basic sampling techniques in Table 3.1 part A constitute methods for drawing population elements into the
sample. Sizple random sampling (SRS sampling) and systematic sampling (SYS sampling) are equal probability sampling
methods: the probability of population element to be included in the sample is the same for all population
elements. Probability proportional to size sampling (PPS sampling) and balanced sampling are unequal probability sampling
methods, where the inclusion probabilities can vary between elements. These four methods are used for obtaining
probability samples from the target population of the sample survey.

In stratified sampling (STR sampling), population elements are first grouped into non-overlapping subpopulations
called s#rata. The strata are independent subpopulations, and a sample of elements is drawn from each stratum by
one of the methods (1)-(4) in Table 3.1. The number of sample elements (individual elements or groups of
elements called c/usters) drawn from each stratum is defined by allocation methods. Stratified sampling can thus be
applied for sampling of individual elements or groups of elements or clusters.
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Part B contains combinations of methods of part A of varying complexity, depending on the requirements of the
survey. For example in stratified cluster sampling, the population of clusters is first stratified. A sample of
clusters is then drawn from each stratum, and the individual elements are selected from the sample clusters. In
the handbook we discuss element sampling designs of part A, methods (1) to (3) and stratified sampling (5),
which constitute the most popular schemes in fisheries statistics practice.

3.2 SIMPOP population

Computational examples in the handbook are based on an artificial population SIMPOP containing complete
records for N = 120 fishing vessels (elements, units) on p = 20 variables. Table 3.2 presents the list of variables
in SIMPOP. All variables are of numeric type.

Variables in the SIMPOP represent typical variable types in fisheries statistics at reference year. Variable 1D is
unique vessel identification code obtained from a vessel register. Variable STR3 is stratum variable for stratified
sampling. For stratification, every population vessel is assigned a value indicating stratum membership. STR3 has
been constructed by dividing the 120 population vessels into three equal-sized groups based on variable GT
(vessel tonnage), whose values are known for all population vessels. The role of variable DOMO1 is different.
While STR3 is used in the sampling phase for the grouping of the population vessels into strata, DOMO1 is not
related to the sampling design. DOMO1 is used for grouping of population elements after drawing the sample
and data collection. The variable will be used in estimation for population subgroups (domains) and in post-
stratification. DOMO1 indicates whether a vessel catches "expensive" fish (DOMO1 = 1) or not (DOMO1 = 0).
ACTIVITY indicates whether a vessel has been active in the reference time period considered (ACTIVITY = 1)
ot not (ACTIVITY=0). Of the 120 population vessels, 100 are coded active and 20 non-active. The main share
of computational examples in this section consider the set of active vessels.

Table 3.2. The list of variables in the SIMPOP data set.

Variables in Creation Order
# | Variable Label
11D Unique identification code
2 |STR3 Stratum variable (3 strata)
3| DOMO1 Fishing type (domain variable with 2 classes)
4| LENGTH Length of vessel (meters)
5|GT Vessel tonnage (GT)
6| kW Engine power (kW)
7| ACTIVITY Vessel activity indicator (1=active, 0=otherwise)
8| DAS Days at sea
9| GT_DAS GT_Days
10 | KW_DAS kW_Days
11| CATCH Catch (ton)
12| VALUE Value of landings (Euro)
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Variables in Creation Order

# | Variable Label

13 | FUEL Fuel costs

14 | LABOR Labour costs

15| OTHER_VAR Other variable costs
16 | REPAIR Repair costs

17 | OTHER_NONVAR | Other non-variable costs

18 | TOTAL_COST Total costs

19 | GROSS_PROFIT Gross profit

In the examples of this section, some variables in SIMPOP are treated as target variables (variables of interest)
and some are auxiliary variables. The target variables are of main interest in a fishery survey. Data for the target
variables are collected from a sample drawn for the survey and further, incorporated in the estimation
procedures. There are 9 potential target variables in SIMPOP. Values of these variables are coded zero for non-
active vessels. Examples of relevant target variables are CATCH, VALUE and TOTAL_COST.

Data for the auxiliary variables are often taken from national registers on fishery or other administrative data
sources. Some auxiliary variables are used in the sampling phase and they must be included in the sampling
frame. Examples are STR3 for stratified sampling and GT for size variable in PPS sampling. Some auxiliary
variables are used the estimation procedures. Variables GT and DAS (if included in frame) are examples of
auxiliary variables suitable for ratio and regression estimation. In the worked examples, we assume that data for
the auxiliary variables are available as aggregate-level values or unit-level values of the auxiliary variables,
depending on the requirements of the chosen method.

In our examples, the roles of some variables can change depending on the given statistical data infrastructure.
For example, in some examples variable days at sea (DAS) is treated as auxiliary variable. In this case, data on
DAS are available for all vessels in the population. In some cases, DAS is a target variable and then its
measurements are assumed known for sample vessels only. The variable ACTIVITY is treated as auxiliary
variable in most cases. Descriptive statistics on selected variables in the entire SIMPOP are presented in Table
3.3. The data set contains both active and inactive vessels.

Table 3.3 Descriptive statistics of selected variables in the SIMPOP data set (all vessels).

Variable N Mean Total | Minimum | Maximum
CATCH 120 5200 624036 0 13391
VALUE 120| 1622301 | 194676173 0 5278581
TOTAL_COST |[120| 1041983 | 125037964 0 3059456
GROSS_PROFIT | 120 580318 | 69638209 -36978| 2263956
DAS 120 | 152.56667 18308 0| 250.00000
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Variable N Mean Total | Minimum | Maximum
GT 120 326.45750 39175 | 210.60000 | 444.60000
kW 120 831.52427 99783 | 426.46500 1332
GT_DAS 120 50326| 6039087 0 103565
kW_DAS 120 128476 15417180 0 309024

In the table, the first four variables are potential target variables for our examples and the rest are candidates for

auxiliary variables. For the non-active vessels, the population values of the four target variables and the variable
DAS are coded zero.

We next concentrate on the population of active vessels, where measurements for the target variables are
available. Let us first examine the relations between the target variables. Table 3.4 presents their pair-wise
correlations. The target variables appear strongly correlated. Highest correlation (0.98) is for VALUE and
GROSS_PROFIT and lowest (0.56) is for CATCH and GROSS_PROFIT.

Table 3.4. Correlation matrix of selected target variables.

Pearson Correlation Coefficients, N = 100
CATCH | VALUE [ TOTAL_COST | GROSS_PROFIT
CATCH 1.00000 | 0.61567 0.64087 0.56149
VALUE 0.61567| 1.00000 0.97758 0.97664
TOTAL_COST 0.64087| 0.97758 1.00000 0.90948
GROSS_PROFIT | 0-56149| 0.97664 0.90948 1.00000

Scatter Plot Matrix of target variables is presented in Figure 3.1. The mutual relationships of the three target
variables appear to be of linear type. For CATCH, there seems to be two groups of vessels separated by
VALUE, TOTAL_COST and GROSS_PROFIT.

Scatter Plot Matrix
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Figure 3.1 Scatter Plot Matrix of the three target variables (active vessels).
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The availability of high-quality auxiliary data is a cornerstone for developing efficient estimation designs in
fisheries statistics. It is thus important to put resources on collecting such data. For improved accuracy, it is

beneficial if the auxiliary variables have strong relationship with the target variables. Correlation matrix of target
variables with DAS, GT and kW is displayed in Table 3.5.

The table shows that CATCH correlates quite strongly with DAS, GT and kW. The corresponding correlations
of TOTAL_COST are somewhat weaker and for GROSS_PROFIT even more weaker. Obviously, GT and kW
correlate strongly, but the correlation of DAS with GT and kW is weak.

Table 3.5 Correlations of selected target variables with auxiliary variables (active vessels).

Pearson Correlation Coefficients, N = 100
DAS GT kW
CATCH 0.66039 | 0.55892 | 0.49882
VALUE 0.42809 | 0.27729 | 0.18079
TOTAL_COST 0.44040 | 0.42185 | 0.33924
GROSS_PROFIT |0.39574]0.11694 | 0.01071

The table shows that CATCH correlates quite strongly with DAS, GT and kW. The corresponding correlations
of TOTAL_COST are somewhat weaker and for GROSS_PROFIT even more weaker. Obviously, GT and kW
correlate strongly, but the correlation of DAS with GT and kW is weak.

Figure 3.2 contains Scatter Plot Matrices of the four target variables with selected auxiliary variables, divided into
four submatrices. Panels A, B, C and D indicate the association of each target variable with the three selected
auxiliary variables, as well as the mutual relations between the three auxiliaries.
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Figure 3.2 Scatter Plot Matrices of the four target variables with three auxiliary variables (active vessels).

Let us consider the derived variables GT_DAS and kW_DAS, which are constructed as products of GT with
DAS and kW with DAS, respectively, for further illustration of relations between the target variables and
auxiliary variables. Scatter Plot Matrix is in Figure 3.3.

Scatter Plot Matrix
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Figure 3.3 Scatter Plot Matrix of the four target variables with GT_DAS and kW_DAS (active vessels).

Pearson correlation coefficients of the variables are collected in Table 3.6. The new variables GT_DAS and
kW_DAS indicate stronger relations to the target variables than the auxiliary variables DAS, GT and kW in the
previous figure. The table shows that correlations of GT_DAS and kW_DAS with CATCH are substantial and
pretty large with TOTAL_COST. GROSS_PROFIT seems to be less correlated to these auxiliary variables.

Table 3.6 Correlation of the four target variables with GT_DAS and kW_DAS (active vessels).

Pearson Correlation Coefficients, N = 100

CATCH | VALUE | TOTAL_COST | GROSS_PROFIT
GT_DAS | 0.84440| 0.50048 0.60103 0.37471
kW_DAS | 0.79492| 0.41083 0.54004 0.25935

Accuracy gains can be substantial if the relation between a target variable and an auxiliary variable is strong.
Gains may remain minor if the relation is weak. A careful examination of the relations between the target
variables and potential auxiliary variables is an important task in a fishery survey process. For stratified sampling

17



and PPS sampling, the relations can be studied from previous fishery surveys, for example. For calibration and
model-assisted estimation with ratio or regression estimation, the collected survey data itself provides a source of
information for the relations. We present in Chapter 6 estimation results for several target variables.

In our discussion this far, the variable DAS was treated as an auxiliary variable whose values are available at the
unit (vessel) level in the sampling frame. This is possible in a number of fisheries where logbook data are
available. In this case, DAS can be used both in the sampling phase or in the estimation phase. In other cases,
data on DAS must be collected from a sample of active vessels. DAS cannot be used in the sampling phase but
the use in the estimation phase is still possible, if aggregate-level data on DAS are available as population totals
or means.

The population data set SIMPOP was constructed to contain complete records on both target variables and
auxiliary variables, for all active vessels. We can thus compute numerical values for true population parameters,
such as totals, and compare them with their sample-based estimates. This is important for pedagogical purposes.

In practice, however, the values of target variables are assumed known for the sample vessels only, and the
population values are unknown. Still, values for auxiliary variables may be available in the sampling frame or at
least as aggregates.

3.3 Simple random sampling
3.3.1 Background

Simple random sampling (SRS) suites for situations where useful auxiliary information is not available. In such
cases it is reasonable to assign equal selection probability for each unit of the population. Simple random
sampling is also a natural candidate for a reference method when comparing the efficiency of other sample
selection methods. Furthermore, SRS is often integrated into more complex sampling procedures for the final
randomization. Auxiliary information is, however, not utilized in the SRS sampling, even though it would be
available.

3.3.2 Sample selection techniques

An equal selection probability is a common factor in the sample selection techniques of simple random sampling.
In a population U = {1, ..., k, ..., N} of N units, the probability of inclusion of element k in a n element simple
random sample is T, = m = n/N for every population element k € U. SRS designs are thus equal probability
sampling designs.

There are three main sample selection techniques in SRS sampling: Bernoulli sampling, simple random sampling
with replacement and simple random sampling without replacement. In Bernoulli sampling, a random number
from uniform (0,1) distribution is drawn and attached to each element of the population. Then all the elements
with random number smaller than a pre-fixed constant m = n/N are drawn into the sample. In practice,
sampling is carried out in a list-sequential manner applied to the sampling frame. Bernoulli sampling is a without-
replacement type sampling technique. Because of the selection method, sample size in Bernoulli sampling is
random with expected value E(ng ) = Nm. In conditional Bernoulli sampling only samples of size n are accepted.

Replacement of drawn element after each random draw (Simple random: sampling with replacement, SRSWR)
guarantees that the inclusion probability remains equal for each draw. To draw a SRSWR sample of size n, the
first element is drawn with probability 1/N and put back into the frame. The procedure is repeated n times to
obtain the sample; the same unit can appear more than once in the sample. Samples from SRSWR are
independent and the design variances of estimators are simpler than for without-replacement type designs.
However, SRSWR is rarely used in sampling practice. The more common SRS method for practical purposes is
simple random sampling without replacement (SRSWOR). Inclusion probability is still equal for each element in each
separate draws, but the probability changes draw by draw as the draw progresses, because the number of
elements in population frame decreases after each draw.

3.3.3 Estimation of parameters

The Hotvitz-Thompson estimator (2) of the population total t = Y N_; V) under simple random sampling takes
the form
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tur = Zk=1WiVk = N/n X Zio1 Vi = N X Yur, ©)
where the sampling weights are constant wy, = N /n, n is the sample size, and N is the population size.

Population mean ¥ = t/N is estimated by the sample mean yyr = tHTT = Y r1Vi/N.

Design variance of (9) for simple random sampling without replacement (SRSWOR) is given by

Vsrswor (Eur) = N? (1 - %) S?/n

and the variance is estimated by
A 2 ny\ .
Vsrswor (Eur) = N? (1 - ﬁ) §%/n (10)

where $2 = Y¥_1 (v — ¥)2/(N — 1) is the population variance of the target variable Y and §2 =
YR (Vk — Yur)?/(n — 1) is the sample counterpart. The term 1 — % is the so-called finite population correction

Jactor (FPC factor) that channels the effect of relative sample size (sampling fraction f = n/N) to the vatiance
formulas.

Standard error and coefficient of variation for total estimate £y are estimated by formulas (4) and (5),
respectively. For SRSWOR, the design effect is equal to one because sampling and estimation designs are the
same in the numerator and denominator.

For simple random sampling with replacement (SRSWR), the design variance is Vsgsywr (Egr) = N2 (1 -

1) o2 . . A _ Vsrswr(fgr) _ N-1 . . .
N) S#/n, and the design effect is DEFFspgywg (tyr) = Verswor(inr) — Nom' Simple random sampling with

replacement (SRSWR) is, therefore, less efficient than simple random sampling without replacement (SRSWOR),
for sample sizes bigger than one (n > 1).

3.3.4 Worked example

Preliminaries. We consider here the population of N = 100 active vessels in SIMPOP. We execute the
estimation of the population total of variable CATCH in the case where no auxiliary data are assumed, except the
size N of the population (this piece of information is needed for variance estimation). We use the basic
estimation strategy SRSWOR_HT, where the element sample is drawn by simple random sampling without
replacement (SRSWOR), and the estimation relies on the Horvitz-Thompson (HT) estimator.

We demonstrate the effect of the sample size to variance, standard error, coefficient of variation and design
effect estimates of the estimated total.

Sample selection. Our first SRSWOR sample size is 1 = 5 active vessels and thus, we draw a 5% sample from
SIMPOP. The realized sample is listed in Table 3.7. SAMPLE1 represents one of the possible samples of size

n = 5 active vessels that can be drawn with SRSWOR from SIMPOP. The sample has been drawn with the SAS
procedure SURVEYSELECT. The variable SAMPLINGWEIGHT generated by the procedure is sampling
method specific and is included in the sample data set by default.

Table 3.7 SAMPLE1 of n = 5 active vessels drawn from SIMPOP of N = 100 vessels.

Obs | ID | CATCH | SamplingWeight
& Yk Wk

1| 1| 3541.44 20

2| 44| 442192 20

3| 49| 11355.97 20

4| 55| 6865.42 20

5| 93| 9942.19 20
Sum 36126.94 100
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Estimation. Let us compute the estimates for CATCH from SAMPLE1 by using the computational formulas of
Section 3.3.3. Because for SRSWOR the inclusion probabilities ), are constants i.e. T, = m = 5/100 = 0.05
for all active vessels in the population, the weights Wy, for the sample vessels also are constants: Wy, = w =

1/m = 20, and the sum of weights is 100 (= N). The weights are needed in the construction of the HT
estimator £ for CATCH total. By using the Horvitz-Thompson estimator (9) we obtain:

tyr = Yo WiV = 20 X Y21 v = 20 X 36126.94 = 722539.

It is noted that a HT estimator of a total is simply a sum of weighted sample observations of the target variable
Y, where weights are inverses of the inclusion probabilities.

For statistical inference we need a variance estimate Vspsywor (Eyr) and standard error estimate s. e(fyr) of the
total estimatefyr. By (10), variance is estimated by

Ispswor (Eur) = 1007 (1 - 1) $7/5 = 1478232,
where sample variance of CATCH is $§2 = 11500800.86. Standard error estimate is s. e(fy7) = 147823.

By using the estimated total and its S. € we compute a two-sided 95% confidence interval for the estimated total.
The interval is calculated as £y + s.e(Tyr) X taf.a/2 Where tyg /7 is the chosen 100 (1 - %) =975

percentile point of the # distribution with df = n — 1 = 4 degrees of freedom and a = 0.5. For lower limit we
get LCL(Ey7) = 312117 and for upper limit UCL(Ey7) = 1132960. The interval is quite wide.

Coefficient of variation for £y is calculated by (5) as cv(Tyy) = S'eA(tHT) = 247823 _

= 0.20.
tyr 722539

The design effect estimate of tyy is def f(£yr) = 1 in the SRSWOR design. By using the SAS procedure
SURVEYMEANS we obtain the results in Table 3.8.

Table 3.8 Estimated total, standard error and coefficient of variation for variable CATCH from SRSWOR
sample SAMPLE1 of n = 5 vessels.

True Total |Std Dev Coeff of Var
Variable 1 n | Sum of Weights R R 95% CL R
value t s.e(t) cv(t)

CATCH | 624036 | 5 100.000000 722539 | 147823 |312117.193|1132960.36 | 0.204588

The estimated total is £y = 722539 , standard error is 5. e(fyr) = 147823 and coefficient of variation is
cv(tyr) = 0.204588 i.e. 20%. The figures are the same as obtained by the computational formulas. The true
parameter value is t = 624036 and for SAMPLE!1 of » = 5 vessels, the 95% confidence intetval would cover
the true value. But the confidence interval is too wide for any practical purposes. The results seem not reliable
enough.

We next draw a larger SRSWOR sample SAMPLE2 of size of n = 20 vessels. Estimates computed by
SURVEYMEANS are in Table 3.9. Estimated standard error of total estimate is now much smaller than that
from SAMPLE1 of n = 5 vessels. The estimated total is much closer to the true value, and the confidence
interval is substantially narrower than for SAMPLET1. Not surprisingly, we obtain more precise estimation from a
larger sample.
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Table 3.9 Estimated total, standard error and coefficient of variation for variable CATCH from SRSWOR
sample SAMPLE2 of n = 20 vessels.

True Total |Std Dev Coeff of Var
Variable 1 n | Sum of Weights R R 95% CL R

value t s.e(t) cv(t)
CATCH | 624036 | 20 100.000000 | 610603 | 54439 | 496661.885 | 724544.886 0.089156

Simulation experiment. We noted that the estimated total of CATCH from SAMPLE1 is far from the true
value. This is because of the randomization mechanism underlying the sampling technique. To throw more light
on this, we carry out a small pedagogic simulation experiment. We draw a reasonable number, let say K =

100 SRSWOR samples of small size n = 5 vessels from SIMPOP, compute the estimated total, standard error
and coefficient of variation from each sample, and compute the mean of the statistics from the 100 samples.
Then we do the same for a larger sample size n = 20. The results are in Table 3.10.

Table 3.10 Means of estimated totals, standard errors and coefficients of variation for CATCH from K = 100
simulated SRSWOR samples of sizesn = 5 and n = 20 vessels from SIMPOP.

Averages over simulations

Method |VarName | Replicates Total | StdDev CcvV
SumWgt n R R R
t s.e(t) | cv(t)
SRSWOR | CATCH 100 100.000000 5 | 629966 | 91436 0.145160
SRSWOR | CATCH 100 100.000000 | 20 | 626895| 44061 0.070264
True total 624036

The following conclusions can be drawn. On average, the estimated totals tend to closely coincide with the true
total. This holds for both sample sizes. The important property of design unbiasedness of the HT estimator is
often appreciated in official statistics production. Official statistics tends to be a quite conservative atfair and in
that framework, people often want to stay on the safe side and try to avoid unpredictable design bias. Further,
the average standard error and coefficient of variation decline when sample size increases. This means that for
samples of size n = 20, the spread of total estimates computed from sample replicates are more condensed
around the true total than those of samples of size n = 5 vessels.

The average coefficient of vatiation (cv) is 14% for sample size n = 5 and 7% for n = 20. This means that with
four times larger sample the gain in efficiency is substantial. However, increasing the sample size for improved
statistical efficiency is not necessarily optimal for cost efficiency. With a fixed sample size #, statistical efficiency
can be improved over SRSWOR by a more effective sampling design, e.g. stratified sampling or PPS sampling, or
by using auxiliary information in the estimation phase, for example with calibration or regression estimation.

3.3.5 Estimation for domains

Estimates are often requested for unplanned domains i.e. population subgroups that are not defined as strata in
the sampling design. Principles for estimation for unplanned domains under the conditional and unconditional
approaches was discussed in Section 2.5. We estimate the domain totals of CATCH for the SRSWOR sample
SAMPLE2 of n = 20 vessels under strategy SRSWOR_HT. Strategy SRSWOR_RAT is applied for domain
estimation in Section 4.2.4.

The domain variable DOMO1 (type of fishing) indicates whether a vessel catches "expensive" fish (DOMO1 = 1)
or not (DOMO1 = 0). DOMO1 creates two unplanned domains whose sample sizes ng are not controlled by the
sampling design. The distribution of the data into the two domains is in the set-up below.
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Domain | Sample | Sum of Weights | Population | Population totals
- of CATCH
d ng N, N,
0 12 60 70 457163
1 8 40 30 166873
Sum 20 100 100 624036

Estimate Nj is the sum of sampling weights wy, in domain d (d = 0,1) defined as the HT estimate of domain
size N4 in population. Note that Ny are not equal to the population counterparts Ny as would be the case if the
domains were planned type domains.

Horvitz-Thompson estimator (2) of domain total t; of CATCH for domain d can be expressed as tgyr =
Zkesd WiVr =5 X Zkesd Yk, whete notation k € S5 means summation over sample elements in domain

sample sg4, and d = 0 for the first domain and d = 1 for the second domain. HT estimates for domain totals
under conditional and unconditional approaches are:

Domain 0: fOHT = ZRESO WiYVi = 5% ZkESO Vi = 419536

Domain 1: leT = ZkESl WiV = 5% ZkESl Vi = 191067

The sum of domain estimates equals the total estimate for the entire population in Table 3.9, so the HT
estimator is additive. Three scenarios are applied for variance estimation.

Scenario 1: Estimation under the conditional approach with known Ng. Domains are treated as independent
subpopulations similarly as for planned domains i.e. strata. For variance estimation we use the estimator (13) of
Section 3.5.3 sepatately for each domain d, given by

Vsrswor (Eanr) = Ny (1 - Z—Z) ZkEsd(kak — taur/ng)?/(ng — 1),

where tgpr = Yres 4 WiYk is the HT estimator of domain total in domain d, d = 0,1. Original values yj, are
used in the estimator. Variance estimates for domain totals are

Domain 0: Dsgswor (Fonr) = 12 x (1 = 22) x 2580705499.1/(12 — 1) = 482987

Domain 1: Dspsyor Erur) = 8 X (1 - %) X 349481459.16/(8 — 1) = 171142

Scenario 2: Estimation under the conditional approach with unknown Ng. This situation is often met in practice.
Original values Yy, are again used. Variance estimator is

Vsrswr (Eanr) = Ng ZkEsd(kak — taur/na)?/(ng — 1),
Note that there is no fpc, contrary to Scenario 1. Variance estimates are:
Domain 0: Vspewr (Eonr) = 12 X 2580705499.1/(12 — 1) = 530602
Domain 1: Vspsywr (E157) = 8 X 349481459.16/(8 — 1) = 199852
Standard errors increase relative to Scenario 1, because we did not have access to N.

Scenario 3. Estimation under the unconditional approach. Estimates for domains are computed using extended
domain variables with values Ygr = Y if kK € Uy and zero otherwise, d = 0,1, involving two extended domain
variables yor and ;. Hence, the Horvitz-Thompson estimator (2) of domain total to for domain 0 is Lopr =
Y Ro1 WiYor, and tigr = k=1 WY1k, leading to same numerical estimates as for scenarios 1 and 2 under the
conditional approach. Variance estimator for domain d is expressed as (Lehtonen & Veijanen 2009 p. 227):

Vsrswor (Eanr) =1 (1 - %) LkesWYax — tanr/n)?/(n — 1),
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where £gpr = Yres WiVak » d = 0,1, is the HT estimator of domain total of the extended domain variable y gy
for the entire sample. Note that the sum extends over all elements in the sample and yg;, = 0 for elements
outside domain d, but also these elements contribute to the variance estimate for the domain because £y is
nonzero. Variance estimates are:

Domain 0: ")SRSOWR@OHT) =20 X 84‘477180326/(20 - 1) = 84‘34‘4‘2

Domain 1: ﬁSRSWOR(leT) =20 X 3087490102.7/(20 - 1) = 509902

Estimates were computed by SAS procedure SURVEYMEANS (Section A.3). For Scenario 1, we estimated
separately for the two domains with TOTAL= option to define the domain sizes Ny in population for finite
population corrections (fpc). For Scenario 2, fpc was not given and we used the BY statement for the entire
sample, which invokes separate analyses for the two domains. For Scenario 3, estimates were computed with the
DOMAIN statement for the entire sample, which accounts for the extra variance via the extended domain
variables. Equal results Scenatio 3 are obtained by the R survey function svyby (Section B.3.4).

Results for the three scenarios are presented in Table 3.11. The HT estimated CATCH totals are identical in all
scenatios. The differences are in standard error estimates.

Table 3.11 Estimation of domain totals of CATCH with three scenarios for SAMPLE2 of n = 20 vessels under
strategy SRSWOR_HT.

i Std D
Domain Variable n Sur'n of T(jtal :V 95% CL Coeff ?f Var
d ng |Weights | t; | s.e(fy) cv(ty)

Scenario 1. Conditional approach, known N,

0 CATCH | 12 60 419536 | 48298 |313232.887 | 525838.924 0.115122

1 CATCH | 8 40 191067 | 17114 |150598.627 | 231536.333 0.089572

Scenario 2. Conditional approach, unknown N

0 CATCH | 12 60 419536 53060 |302752.639 | 536319.172 0.126472

1 CATCH | 8 40 191067 19985 | 143810.041 | 238324.919 0.104597

Scenario 3. Unconditional approach

0 CATCH | 12 60 419536 | 84344|243002.412|596069.399 0.201041

1 CATCH | 8 40 191067| 50990 | 84343.946 |297791.014 0.266870

In Scenario 1, even if a single sample has actually been drawn from the entire population, the domains are treated
as if a separate sample would have been drawn from each sub-population i.e. domain. The domain sample sizes
are regarded fixed and domain sizes in population were assumed known, as would be the case for planned
domains or strata in stratified sampling. In Scenatio 2, estimates were computed for the case where population
domain sizes were unknown, the situation often encountered in domain estimation practice. Obviously, precision
is weaker relative to Scenario 1, but not substantially. In Scenario 3, domains were treated as unplanned and the
sample distribution over domains was taken uncontrolled. The observed sample sizes in domains are thus
regarded as random variates suggesting the unconditional approach for variance estimation. The unconditional
approach was implemented by using the extended domain variables technique. This approach was the most
conservative.

The approach for variance estimation affects the precision of estimates. Standard errors and coefficients of
variation atre larger when accounting for the randomness of the domain sample sizes by the unconditional
approach, when compared to the conditional approach. The HT estimates for domain totals are additive: their
sum over the domains equals the HT estimate of the total estimated for the entire population. This property is
often appreciated in official statistics. HT estimator does not involve auxiliary information. If domain totals are

., . A Ng » I . . .
known, a Hajék type estimator gy = IV_Z taur that uses Ny as auxiliary information is often used as an

alternative (see Section 4.2.4). However, Hajék type estimators are not additive in general but in special cases
only (Hidiroglou & Patak 2004, Lehtonen & Veijanen 2009 p. 241).
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Calibration and ratio and regtression estimation (Chapter 4) are able to incorporate a variety of auxiliary variables
and may improve precision over HT and Hajék estimation. Lehtonen & Veijanen (2009) provides a review of
calibration and generalized regression estimation methods for the estimation of totals for planned and unplanned
domains, including small domains (with small domain sample size). Variance estimators also are provided.

3.3.6 Guidelines

In fisheries statistics, simple random sampling may be selected as the ultimate sampling technique of elements in
situations where useful auxiliary data are not available. SRS is often used for element sampling from the strata in
stratified sampling designs. The most common SRS technique for practical purposes is simple random sampling
without replacement (SRSWOR). SRSWOR is a natural choice, because the unfeasible occasion to draw the same
unit two or more times in the sample is excluded.

Efficiency of estimation for simple random samples can be improved in the estimation phase. If aggregate-level
data are available on an auxiliary variable that correlates with the target variable, ratio or regression estimation
(Chapter 4) may be possible, assuming that unit-level measurements on the same auxiliary variable are available
in the sample data set.

3.4 Systematic sampling
3.4.1 Background

Systematic sampling (SYS) is another equal probability sampling design where the inclusion probability is a constant
for every population element, similatly as in simple random sampling. In a population U = {1, ..., k, ..., N} of N
units, the probability of inclusion in a # element systematic sample is T, = ™ = n/N for population element

keU.

Auxiliary information does not play a role in standard application of systematic sampling. In smplicit stratification,
auxiliary information is sometimes used before sample selection. In this method, the population frame is sorted
by one or several auxiliary variables that are assumed to correlate with the target variable. It should be noted that
sorting of the population before systematic sampling can be harmful for the representativeness of the sample, if
the sampling interval happens to coincide with a harmonic or periodic variation in the ordered population. Then,
substantial parts of the population may not be represented in a systematic sample.

3.4.2 Sample selection techniques

Systematic sampling is a without-replacement type sampling technique. For a systematic sample with one random
start, the sampling interval ¢ = N /n is set first. Assuming an integer g, each ¢” element is selected in the sample.
The first element is selected randomly from the q first frame elements or by taking a random integer from the
interval [1, N| for the first element and selecting the further elements in a closed loop over the entire frame with
steps of length q. Statistical software use SYS algorithms with fractional intervals to provide exactly the specified
sample size N.

For a fixed sorting order of the population, the number of different systematic samples with one random start is
q i.e. the sampling interval. The selection probability is p(s) = 1/q for sample s and the inclusion probability of
element kism, = 1/q =n/N.

3.4.3 Estimation of parameters

In the estimation of population total and mean, formulas for SRSWOR can be used. There is no analytic
estimator available for the design variance of an estimator of a total under systematic sampling. Therefore,
approximations for the design variance are used. Assuming that units in the sampling frame are in random order
relative to the variation of the target variable, the efficiency of systematic sampling is similar to the efficiency of
simple random sampling without replacement. In this case, variance estimators of SRSWOR are often used in
practice.
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3.4.4 Worked example

Preliminaries. We continue working with the population of active vessels in SIMPOP. Our aim is to estimate
the CATCH total and associated quality indicators under systematic sampling in the case where no auxiliary data
are used. The estimation strategy is SYS_HT, where the sample is drawn by systematic sampling and the
estimation relies on a Horvitz-Thompson estimator. Because inclusion probabilities in SYS are equal for all
population elements, the weights for HT estimation are constants. The strategy SRSWOR_HT acts as the
reference strategy

Estimation. As stated in 3.4.3, the estimation of population total proceeds as for the SRSWOR_HT strategy.
Because no analytic estimator for the SYS design variance exists, the SRSWOR variance estimator (10) is often
recommended for situations where the sorting order of the frame population is assumed independent on the
variation of the target variable.

Simulation experiment. We want to examine whether it is justified to apply the SRSWOR variance and
standard error formulas for SYS samples, when the SIMPOP population is sorted into random order. Because
we need separate samples drawn with both methods, the assessment must be based on a simulation experiment.
We proceeded as follows.

—  Scenario 1: A random variate RANDOM was generated from uniform (0,1) distribution and assigned to
SIMPOP. Then, SIMPOP was sorted by RANDOM, and K = 100 SYS and SRSWOR samples of
n =>5andn = 20 elements were drawn from the sorted population.

—  Scenario 2: SIMPOP was sorted by GT, and K = 100 SYS samples of size 5 and 20 elements were
drawn from the sorted population.

— For both scenarios, CATCH total, standard error and coefficient of variation were computed by
SRSWOR formulas for each sample and estimates were averaged over the simulations.

Estimation results are in Table 3.12.

Table 3.12 Means of estimated totals, standard errors and coefficients of variation for CATCH from K = 100
simulated SYS and SRSWOR samples of sizesn = 5 andn = 20 from SIMPOP.

Averages over simulations

Obs VarName | Replicates Total |StdDev| CV
SumWgt | n 2 N A
t s.e(t) | cv(t)

Sample size n=5

Scenario 1: Population in random order

SYS_HT | CATCH 100 100.000000

w

608791 | 84671|0.137494

w

SRSWOR_HT | CATCH 100 100.000000 633850 88704 |0.139704

Scenario 2: Population sorted by GT

SYS_HT | CATCH 100 100.000000

w

627867 96021{0.152833

Sample size n = 20

Scenario 1: Population in random order

SYS_HT | CATCH 100 100.000000 | 20| 624636 | 43692 0.069728

SRSWOR_HT | CATCH 100 100.000000 | 20| 631258 | 43574|0.068968

Scenario 2: Population sorted by GT

SYS_HT | CATCH 100 100.000000 | 20| 624281 | 44522]0.071634

Average coefficients of variation of SRSWOR estimates for the SRSWOR and SYS samples are quite close for
both sample sizes. SRSWOR variance formula seems appropriate when the frame units are in random order. But
for Scenario 2, where the sorting order of the population elements and the target variable are associated, the

25



SRSWOR variance estimator tends to produce somewhat larger coefficients of variation than in Scenario 1, for
both sample sizes.

The results suggest warning against blind use of the SRS variance formulas for systematic samples. In uncertain
situations it is advisable to examine the relation of the population sorting and the target variable or use
alternative variance estimators.

3.4.5 Guidelines

In fisheries statistics, systematic sampling can be used instead of simple random sampling when appropriate. For
example, systematic sampling is sometimes used in element sampling from frames that are first sorted by regional
or related variables in order to have good geographical representation in the sample. If sorting is used, attention
must be paid to the sorting order of elements in the population frame to avoid possible problems due to
unfeasible sorting order.

In variance estimation, methods of simple random sampling can be used for samples drawn from randomly
ordered sampling frames. In implicit stratification, the standard machinery of stratified sampling (see. Sect. 3.6)
can be used. Other options are for example pseudo replication methods (jackknife, bootstrap) or the selection of
replicated systematic samples (e.g. Lehtonen & Pahkinen 2004, Wolter 2007).

3.5 Sampling with probability proportional to size

3.5.1 Background

Sampling with probability proportional to size (PPS sampling) is an unequal probability sampling method, which
is often used for random sampling in business statistics and elsewhere, where the sizes of sampling units vary
significantly. If the values of size variable and target variable are closely related, the design variance of the
estimator of total can be expected to be smaller than in equal probability designs.

In a population of N units, the probability of inclusion in a 1 element PPS sample is m, = n X zy /t,, where z,
is the value of the size variable Z for element k € U, t,/z, is the relative size of element & and t, = Y.h=; Z is
the known population total of the size variable. Sampling weights are given by wy, = 1/my. The sizes zj, ate
assumed known for each element k of the frame. The size variable should be chosen so that its variation
resembles the variation of the variable of interest Y. The mote the ratio Y /Z) remains constant across the
population, the more efficient the PPS sampling will be.

The inclusion probabilities should meet the requirement Ty < 1 for all £ When the size measure Z is
exceptionally large for one or several elements, it can happen that the inclusion probabilities become greater than
one for those elements, that is, nzy /t, > 1. This situation can be met when working with skewed populations,
e.g. in business surveys. In practice, separate strata called cerfainty strata are formed from these elements, and their
inclusion probabilities are set Ty, = 1 (i.e. they are drawn with certainty; see Lehtonen & Pahkinen 2004, p. 53).

3.5.2 Sample selection techniques

Similarly as in simple random sampling, a PPS sample can be drawn with replacement or without replacement.
Computation of the inclusion probabilities is easier to manage under with-replacement type sampling, because
the population remains unchanged after each draw. In without-replacement type PPS sampling, the population
changes after each draw and the inclusion probabilities must be re-calculated for the remaining elements. The
without-replacement type PPS complicates the estimation of design variances, because the joint (second-order)
inclusion probabilities Tg; for the inclusion of both elements £ and /in the sample are required. An exception is
Poisson sampling, where 1Ty; = 1) X 1, which simplifies computation. This property also holds for PPS
sampling with replacement.

Various versions of PPS sampling have been proposed in the literature and are available in computer software
such as SAS, SPSS and R. Examples are PPSWR and PPSWOR with cumulative total method with replacement or
without replacement, systematic PPS sampling and Poisson sampling. A popular method in fixed-size without
replacement type PPS sampling is the Hanurav-Vijayan method (Hanurav 1967, Vijayan 1968).
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In Poisson sampling, the inclusion probabilities T, = n X z /t, are first calculated for each population element.
Independent random numbers &, k = 1, ..., N are then drawn from uniform (0,1) distribution and attached to
elements k in the population. An element k is selected to the sample if & < 1. Similatly as in Bernoulli
sampling (Section 3.3.2), the size of the resulting sample is random with expected value E(ng) = Y¥—; mx. In
conditional Poisson sampling, only samples of size n are accepted.

In fact, most basic sampling techniques are special cases of PPS sampling. For example, by setting the PPS size
variable values z;, = 1 for all population elements in PPS_WOR sampling, estimates corresponding to SRSWOR
sampling would be obtained.

Chaudhuri & Vos (1988) presents a unified approach for unequal probability sampling and a selection of various
variants of PPS sampling schemes. Tillé (2006) introduces an inventory of new methods and algorithms for
unequal probability sampling.

3.5.3 Estimation of parameters

Under PPSWOR, Horvitz-Thompson (HT) estimator of population total t = Y ¥=; ¥ of target variable Y'is of
the form (2) given by

fHT = Z;{lzlwkyk = Z‘Ir(lzl yk /T[ka

where W, =1/ 7, are PPS sampling weights. Because inclusion probabilities are determined by element-specific

size variable values, the weights can vary between sample elements.

A textbook variance estimator of Eyp is:

Oppswor (Eur) = Lk=1 Xi=1(WikWi — W) Vi V1, Q)
where Wy = 1/my;. An alternative Sen-Yates-Grundy estimator for fixed-size samples is:

~ A w

Oppsworz(ur) = Lk=1 Zi=1 (Wl\j’z - 1) Wiy — Wiy, (12)

<k

which is often preferred in practice. Sampling programs of standard software (SAS, R) are able to compute at
least approximate joint inclusion probabilities for certain without-replacement type PPS sampling designs for
not-too-large fixed-size samples. Examples are the basic PPSWOR and the PPS sampling methods of Sampford,
Midzuno-Sen and Tillé. As an alternative, with-replacement type approximations for PPS variance estimation are
implemented in some analysis programs. A somewhat conservative variance estimator is:

n(1-1) A
- k=1 (WieVk — tyr/n)?, (13)

f)PPSWR (fHT) =

where f = n/N is sampling fraction. Estimator (13) assumes with-replacement PPS sampling (Lehtonen and
Veijanen 2009 p. 227). For example, the SAS procedure SURVEYMEANS uses this variance estimator.

3.5.4 Worked example

Preliminaries. Sampling with probability proportional to size, i.e. PPS sampling, represents a traditional
technique for sampling of elements whose sizes vary in some sense. Examples are samples of schools,
establishments, regional areas and why not fishing vessels. In the sampling frame of PPS sampling, a continuous
(ot count) type auxiliary variable is required, which measures the size of population element, such as vessel
tonnage, engine power etc. If the relation of target variable ¥ and size measure Z is strong, then PPS sampling
may improve efficiency. We discuss PPS for element-level sampling designs.

We continue working with the population of active vessels. Our target variable is CATCH. We assume that we
have access to a single auxiliary variable, for example GT (vessel tonnage) whose values are available for all
population vessels in the sampling frame. The variable GT is promising: by Table 3.4, cort(CATCH,GT) = 0.56.
GT will serve as the size variable in our PPSWOR sampling exercise. In addition, we will demonstrate PPS
sampling with another, more powerful, auxiliary variable as the size variable and examine its effect to precision.

We adopt the estimation strategy PPSWOR_HT, where the sample is drawn from SIMPOP by PPSWOR and
estimation relies on a Horvitz-Thompson (HT) estimator. We demonstrate the effect of the sample size # to
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variance, standard error and coefficient of variation estimates of the estimated total of CATCH. We compare the
results with our reference strategy SRSWOR_HT by computing the design effect estimate.

Sample selection. Our first sample size drawn by SURVEYSELECT is n = 5 active vessels for a 5% sample
from SIMPOP. The realized sample SAMPLE3 is listed in Table 3.13. In addition to the variables ID, CATCH
and weight variable SAMPLINGWEIGHT, the values of size variable GT are included. In PPS sampling,
weights are inverses of the probabilities to be selected in the sample and are vessel specific, values depending on
the value of GT. Therefore, the values of weights vary. PPS thus is an wnequal probability sampling technigue. Large
vessels (measured in GT) get smaller weights than smaller vessels. In other words, probability of selection is
larger for large vessels and smaller for small vessels. Note also that the sum of weights differ from the population
size (N = 100). Sum of weights is sample specific and depends on the goodness of fit of the undetlying implicit
model Y, = Bxj + €. If the model is approximately correct then the sum of weights will be close to N.

Table 3.13 PPSWOR sample SAMPLE3 of n = 5 active vessels drawn from SIMPOP of N = 100 vessels.

Obs D CATCH | GT |SamplingWeight
& Vi Zk Wi

1| 65| 3799.95|329.0 19.9978

2| 89| 6845.81|343.2 19.1704

3| 27| 6087.56|345.1 19.0649

4| 53| 7601.87|376.2 17.4888

5| 94| 10615.99 | 436.8 15.0625
Sum 90.7843

Estimation. Let us compute the estimates for CATCH total from SAMPLE3 by using the computational
formulas of Section 3.5.2 and 3.5.3. By inserting the PPSWOR weights wy, and sample values of CATCH from
Table 3.13 into the HT estimator (2) we obtain:

tur = Yoo, Wiy = 616136.

We estimate the standard error s. e(£y7) by the square root of an approximate variance estimator (13). The
estimator is based on the with replacement (WR) assumption and is often used in practice (e.g. SAS procedure
SURVEYMEANS). This is a conservative estimator, because WR sampling tends to be less effective than WOR
sampling.

By inserting the values of weights, CATCH and GT from Table 3.13 into the variance estimator (13) we get:

5x(1-5/100)

— 2k=1(Wxyx — 616136/5)* = 670552,

Vppswr(Eur) =
where s.e(fyr) = 67055. A two-sided 95% confidence interval for the estimated total is computed similarly as
in Section 3.3.4:

Lower confidence limit: LCL(£y7) = 429961
Upper confidence limit: UCL(ty7) = 802310.

The confidence interval is much narrower than for the SRSWOR case. Coefficient of variation (5) for tyr is
calculated as:

cv(Eyr) = % =0.11.
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Finally, we compute the design effect estimate (7) of 7 . SURVEYMEANS does not give deff estimates by
default and we compute it separately.

2 _ Vppswr(Eur) _ 67055%
deff(tur) = Vsrswor(Eyr) 1079522 0.39

b

where typ variance estimate under the actual PPSWOR design for SAMPLE3 is in the numerator and the
SRSWOR variance estimate for SAMPLES3 is in the denominator (note that numerical values of £ would be
unequal because of different weighting). The PPSWOR_HT strategy clearly is more efficient than would be the
SRSWOR_HT strategy for SAMPLE3.

Estimates are also computed by SURVEYMEANS and are displayed in Table 3.14.

Table 3.14 Estimated total, standard error and coefficient of variation for variable CATCH from PPSWOR
sample SAMPLE3 of n = 5 vessels.

Total |Std Dev
Variable | 17 | 5| Sum of Weights 95% CL Coeff of Var

value £ s.e(?) cv(t)

CATCH | 624036 | 5 90.784295 616136| 67055 |429961.882|802310.945| 0.108831

We next draw a larger sample of size n = 20 vessels. Estimates computed by SURVEYMEANS are in Table
3.15.

Table 3.15 Estimated total, standard error and coefficient of variation for variable CATCH from PPSWOR
sample SAMPLE4 of n = 20 vessels.

True Total | Std Dev Coeff of Var
Variable 1 n | Sum of Weights R R 95% CL .

value t s.e(D) cv(b)
CATCH |624036 | 20 99.434022 | 664942 40175| 580855.134 | 749027.890| 0.060418

Estimated standard error for total estimate from PPSWOR SAMPLE4 of n = 20 vessels is smaller than from
SAMPLE3 n = 5 vessels. Coefficient of variation is smaller and confidence interval is narrower than for
SAMPLE3. Estimation results with a larger PPS sample size are more reliable than for a smaller PPS sample.

Comparing with a SRSWOR sample of same size n = 20, design effect is calculated as:

2 _ Vppswr(Enr) _ 40175% _
deff(tur) = Vsrswor(Eur) 491582 0.67.

It can be shown that that SRSWOR can be considered as a special case of PPSWOR sampling. For example, by
setting the size variable values z,, = 1 for all population elements in PPSWOR sampling, we would obtain
numerically close estimation results as with SRSWOR

Simulation experiment. Let us demonstrate numerically some theoretical properties of PPSWOR sampling by
drawing several PPSWOR samples from SIMPOP with GT as size variable and by examining the distribution of
the estimated totals, se:s and cv:s. We draw K = 100 PPSWOR samples of small size n = 5 vessels and then
with larger size n = 20 vessels from SIMPOP, compute the estimated total, s.c and cv from each sample.
Finally, we compute the means of the statistics for the 100 samples.

Summary results are in Table 3.16. For comparison, we also show estimation results under PPSWOR sampling

with GT_DAS as size variable. By Table 3.6, CATCH and GT_DAS are more strongly correlated than CATCH
and GT: cort(CATCH,GT_DAS) = 0.84. We also include the results for SRSWOR sampling from Section 3.3.4.
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Table 3.16 Means of estimated totals, standard errors and coefficients of variation for CATCH from K = 100
simulated SRSWOR and PPSWOR samples of sizes n = 5 and n = 20 vessels from SIMPOP.

Averages over simulations

Method |VarName | AuxVar | Replicates Total StdDev CcvV
SumWgt n R R R
t s.e(t) cv(t)
Sample size # =5
1. SRSWOR | CATCH none 100 100.000000 | 5 629966 91436 0.145160
2. PPSWOR | CATCH GT 100 98.901065| 5 619855 77979 0.127500
3. PPSWOR | CATCH | GT_DAS 100 98.622793| 5 631954 45627 0.073189

Sample size #» = 20

4. SRSWOR | CATCH none 100 100.000000| 20 626895 44001 0.070264

5. PPSWOR | CATCH GT 100 100.168244| 20 625331 36331 0.058307

6. PPSWOR | CATCH | GT_DAS 100 100.044228 | 20 624245 22487 0.036093

True total | CATCH 624036

Both SRSWOR and PPSWOR produce estimated totals that on average are close to the true total, for both
sample sizes, confirming the design unbiasedness property for HT estimator under the equal-probability
SRSWOR design and the unequal probability PPS sampling design. For both methods, the average standard
error and coefficient of variation figures decline when sample size increases, as expected. For both sample sizes,
coefficients of variation for PPSWOR samples are smaller than cv:s for SRSWOR, so PPS sampling clearly
improves accuracy.

Estimation results under PPS with GT_DAS as size variable are most striking. When comparing standard errors
ot cvis in Table 3.16 rows 3 and 4 we note the following. For PPS sampling with sample size n = 5 and
GT_DAS as size variable, the same precision is obtained as under SRSWOR with sample size n = 20 i.c. four
times larger sample size. It appears very cost effective to use PPS sampling in this case.

Statistical properties (design bias and accuracy) of PPS sampling and SRSWOR can be examined further by
displaying the distributions of the estimates for both methods. Graphs under sample size # = 5 vessels are in
Figure 3.4. For proper distributions we use K = 1000 simulated samples. A near symmetry of the distribution
around the mean is beneficial for inference purposes. The mean of the estimates approximates the design
expectation of the distribution. Design unbiasedness is attained if the mean is close to the true total. The
variation of the estimates around the mean shows the precision behaviour of the strategy: the more condensed
around the mean, the more effective strategy. It is cleatly seen that both distributions are close to symmetry.
Both methods indicate design unbiasedness, as expected. The variation of estimates is smaller for PPSWOR than
for SRSWOR.
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Figure 3.4. Distributions of total estimates from K = 1000 SRSWOR and PPSWOR samples.

Examination of assumptions on PPS sampling. High correlation of target variable and size variable is good
for PPS sampling to be effective. The correlation of CATCH and GT is reasonably high (0.50) in the population
and for SAMPLEA4, the correlation is 0.61. But high correlation alone is not enough for proper behaviour of
PPSWOR. In addition, the ratio of CATCH and GT should be nearly constant over the population.
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Figure 3.5 Scatter plots of RATIO with ID and CATCH with GT in SIMPOP and SAMPLE4.

The fitted regression line for the population (Panel B) goes close to the origin. These properties are favourable
for good petformance of PPS sampling. For SAMPLE4 of size n = 20, the situation in Panels C and D seems

to be adequate enough for good performance of PPSWOR sampling in this exercise.
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3.5.5 Guidelines

In PPS sampling, the auxiliary information is introduced in the sampling design. Values of the size variable must
be available for all vessels in the sampling frame. It is important for good efficiency of estimation under PPS
sampling to choose the size variable so that its variation resembles the variation of the target variable of interest.

PPS sampling is often used in descriptive surveys, where the focus is in a single important target variable or a few
mutually correlated target variables, and reliable estimation is required for just these variables. If a powerful size
variable is available in the sampling frame, the strategy can be optimized for efficient estimation, and PPS can be
a reasonable choice for good cost-efficiency.

However, situations can be met in practice where a PPS sampling design is even worse in precision than
SRSWOR, if the assumptions underlying PPS sampling are not met. It is necessary to examine the assumptions
in each specific sampling situation, e.g. based on data from possible previous surveys.

Situations can occur in practice where the set of target variables consists of several diverge variables. A PPS
sampling design cannot be optimized for all these variables, because a single size variable only can be introduced.
We study in Chapter 4 how the precision can be improved by using model-assisted methods in the estimation
phase under a simple sampling design.

3.6 Stratified sampling

3.6.1 Background

In stratified sampling (STR sampling), the population is divided into non-ovetlapping subpopulations by using one
or several categorical stratification variables, whose values must be available for all population elements in the
sampling frame. The subpopulations are called s#afa and they can be treated as separate populations in the
sampling and estimation phases. Regional, demographic, socioeconomic, or other appropriate auxiliary
information can be utilized in the stratification of the population elements, but strata can also be inherent in the
data. For example, administrative areas can be used to guarantee exhaustive presentation of an entire country.
Efficiency of estimation can improve relative to SRS sampling, if the strata are internally homogeneous with
respect to the target variable.

3.6.2 Allocation and sample selection

Several sample allocation procedures have been proposed for the STR sampling in the literature, for example
Lehtonen & Pahkinen (2004) and Lohr (2009). Some commonly used procedures are described briefly.

Proportional allocation is a reasonable and popular starting point as only the stratum sizes Ny, are assumed to
be known. The sampling fraction n, /Ny = n/N is constant for each stratum 4, so that the share of the sample
for each stratum is

Np
Nphprop = N Xn =W, Xn,

Np . . . . . .
where W), = Wh is stratum weight and 7 is the overall sample size. Sampling fraction n/N and therefore the

inclusion probabilities are constant. Proportional allocation thus leads to an equal probability sampling design.
This simplifies estimation, but can lead to minor improvements in statistical efficiency when compared with
more advanced allocation schemes, if stratum variances in population vary greatly. If the strata are internally
homogeneous with respect to the target variable, proportional allocation can improve precision relative to SRS
sampling.
Neyman (optimal) allocation utilizes the stratum standard deviations of the variable of interest. Optimal
allocation of sample elements to stratum h would then be

NnSh

NpNeyman = N X i NSy
=1

where Sp, is population standard deviation in stratum h. Standard deviations are usually unknown, but they can
be approximated from eatlier studies or other reliable source. Optimal allocation provides the most efficient
allocation scheme for stratified sampling. This method is often used in repeated business surveys. The allocation
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formula shows that more units are allocated to a large and internally heterogeneous stratum than for a small and
homogeneous stratum. Neyman allocation is often used in optimizing the costs, if the unit costs of sampling vary
in strata and the costs can be approximated.

Power allocation can be used if there are several small strata and precise estimates at all stratum levels are
required. In addition to an approximation of the population coefficient of variation of the target variable, a
known stratum-wise population total of an auxiliary variable can be introduced in the allocation procedure.

In equal allocation, the same number of elements is drawn from each stratum so that Y.H_; nj, = n, the overall
sample size. If the strata sizes N are unequal then equal allocation produces an unequal sampling design. Equal
allocation is sometimes used in surveys to obtain a desired precision also for strata whose sizes are small. No
auxiliary information is needed except the stratum sizes Np,.

Multivariate allocation methods have been proposed in the literature for the optimization of sample sizes for
the population subgroups of interest (strata or domains) to attain a pre-specified precision of the estimates in
multi-purpose sample surveys. In such surveys there are often a number of diverse target variables with a
different variance V;,j = 1, ..., J. A precision constraint is first set to each of the vatiables and an allocation
producing the minimal costs is then selected from the allocations that meet the constraints. Popular methods are
the ones published by Bethel (1989) and Chromy (1987). Both are iterative methods and the Chromy method is
often preferred in cases where the number of strata is large, because the convergence is expected to be faster.
One of the computerized tools is the MAUSS-R software (Buglielli et al. 2013), which is used for the production
of fisheries statistics in Italy (Section 8.1). Further, Benedetti et al. (2008) proposed an approach that combines
stratification and sample allocation including the choice of stratifying variables, the number of class intervals for
each variable, and the optimal Bethel allocation of the sample into the strata. More sophisticated methods are
needed for skewed populations that are often encountered in environmental and business surveys, see e.g.

Benedetti et al. (2010).

3.6.3 Estimation of parameters

In the estimation phase, the individual strata are considered as independent subpopulations. Stratum-wise
parameters are estimated by using appropriate sampling weights and summed over the strata for estimates on the

overall population parameters. A HT estimator for population total t = YH_; 21,21 Yhi thus is:
A A n
tur = Zh=1tn = Zh-1 Xkky WniYnke (14)

where &, = 22’;1 Whi Vhk is an estimator of the total ty, of stratum h and wpy = 1/mp is the sampling weight

for element k in stratum h, derived for the entire sample such that 221:1 ZZZI Wy = N. For SRS sampling, for
example, the total is estimated by

A a~ N n a
tsrr = Xh=1tn =ZZI=1n_:Zk21 Ynk = 2h=1 NnVn, (15)
. Np

as the weights are Wy = g h=1,.. H.

Due to the independence assumption, the variance estimator of the overall estimator £y is simply the sum of
stratum variance estimators, given by:

Dsrr (fHT) = Zlf-ll:l 17(fh)a (16)

where V(%) is variance estimator for £y, in stratum h. The stratum variance estimators depend on the element
sampling technique and the type of the estimator of the total in stratum h. The variance formula indicates that
variance estimate becomes small and estimation is efficient, if stratum samples are internally homogeneous.
Allocation also affects the variance of the overall estimators since the stratum size has an effect on the stratum
variance.

3.6.4 Worked example

Preliminaries. In stratified sampling (STR), the population elements are first grouped into non-overlapping
strata by using a single or multiple auxiliary variables as the stratification variables. Typical stratification variables
are regional and economic variables and variables describing the properties of population elements, such as type
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of industry, turnover and staff size in business surveys. Stratification variables must be available in the sampling
frame. Stratification is followed by sample allocation into strata using one of the allocation techniques. For the
selection of a random sample from each stratum, one of the basic sampling techniques, simple random sampling,
systematic sampling or PPS sampling, is used, the choice of technique depending on the type of the population
element and the availability of auxiliary data in the sampling frame.

There are various objectives for stratified sampling in fisheries surveys. By stratification combined with an
appropriate allocation scheme, it is possible to determine the number of vessels, to be drawn from each stratum
so that all important parts of the vessel population will be properly represented in the sample. A sufficiently large
sample size can be allocated for the strata that are of special interest and for rare subgroups to obtain precise
enough estimation for these subgroups. Indeed, in surveys it is common to define the main subgroups of the
population as strata for which accurate estimates are required.

We continue working with the population of active vessels. Stratification is made by the variable STR3. STR3
was created by dividing the variable GT (vessel tonnage) into three neatly equal-sized classes coded 1, 2 and 3. In
Section 3.5.4 we used GT as a continuous size variable in PPS sampling. Now we use the same variable as a
categorical variable for stratification purposes. This gives for us an option to compare the accuracy performance
of PPS sampling and stratified sampling where basically, the same auxiliary information is used.

We use estimation strategies STR_SRSWOR_HT and STR_PPSWOR_HT, where the population is first
stratified into three strata by the variable STR3. Then we fix the total sample size # and select the allocation
scheme. We apply proportional allocation, where the stratum sample sizes are proportional to the stratum sizes
in the population. This produces an equal probability sampling design.

Estimation in both strategies relies on a Horvitz-Thompson (HT) estimator. We demonstrate the effect of the
sampling design within strata to standard error and coefficient of variation estimates of the estimated total of
CATCH. We compare the results with our reference strategy SRSWOR_HT by computing the design effect
estimates.

Sample selection. By using PROC SURVEYSELECT, we draw from SIMPOP the following stratified samples
of n = 20 active vessels with STR3 as the stratification variable:

2) SAMPLEDS by stratified SRSWOR
(a) Y
SAMPLESG by stratified PPSWOR with GT_DAS as the size variable.
y

We use proportional allocation for both cases. The realized stratified samples SAMPLE5 and SAMPLEG are
listed in Table 3.17.
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Table 3.17 Stratified SRSWOR and PPSWOR samples SAMPLE5 and SAMPLEG of # = 20 active vessels drawn
from SIMPOP.

(a) Stratified SRSWOR sample (b) Stratified PPSWOR sample
Obs Selection | Sampling Obs Selection | Sampling
ID | STR3 | CATCH ID | STR3 | CATCH | GT_DAS

k Prob Weight k Prob Weight
1] 1 1| 3541.44| 0.18182 5.500 1| 44 1] 4421.92| 46546.5| 0.17298 5.7812
2| 22 1| 3538.14| 0.18182 5.500 2| 41 1] 3651.90| 52170.0| 0.19387 5.1580
3|23 1| 8402.75| 0.18182 5.500 3| 35 1| 6046.40| 53508.0| 0.19885 5.0290
4] 25 1] 4978.66| 0.18182 5.500 4| 11 1] 5458.75| 56862.0| 0.21131 4.7324
5] 42 1| 8811.94| 0.18182 5.500 5| 38 1| 6288.66| 64170.0| 0.23847 4.1934
6| 44 1| 4421.92| 0.18182 5.500 6| 37 1] 668250 67500.0| 0.25084 3.9866
7] 12 2| 8044.48| 0.21212 4.714 7| 20 2| 415835 38150.0| 0.14405 6.9422
8| 15 2| 3786.06| 0.21212 4.714 8| 48 21 6107.27| 48470.4| 0.18301 5.4641
91 30 2| 7208.94| 0.21212 4.714 9| 80 21 6879.04| 61420.0| 0.23191 4.3120
10| 36 2| 5855.21| 0.21212 4.714 10| 12 2| 80644.48| 68607.0| 0.25905 3.8603
11| 46 2| 8100.05| 0.21212 4.714 11| 69 2| 8709.47| 75081.6| 0.28349 3.5274
12| 52 2| 4888.34| 0.21212 4.714 12| 56 2| 618586 78302.0| 0.29565 3.3824
13| 75 21 9652.44| 0.21212 4.714 13| 50 2| 7179.00| 83476.8| 0.31519 3.1727
14| 55 3] 6865.42| 0.20588 4.857 14| 58 3| 4519.01| 57936.0| 0.15776 6.3386
15| 57 31 6364.10| 0.20588 4.857 15| 79 3| 5227.51| 68783.0| 0.18730 5.3390
16| 67 31 7160.06 | 0.20588 4.857 16| 43 3] 6359.22| 71451.9| 0.19457 5.1396
17| 82 31 9959.59| 0.20588 4.857 17| o1 3| 7173.60 | 85400.0 | 0.23255 4.3001
18| 90 31 8803.08| 0.20588 4.857 18| 57 3] 6364.10| 87179.4| 0.23740 4.2124
19| 91 31 7823.12| 0.20588 4.857 19] 91 3| 7823.12| 101598.9| 0.27666 3.6145
20| 94 311061599 | 0.20588 4.857 20| 81 3113391.04| 103008.0 | 0.28050 3.5651
100.000 92.0508

Estimation. In stratified sampling, estimation is carried out separately in each subpopulation or stratum, and
estimates for the entire population are computed as sums of the stratum estimates.

CASE (a) STR_SRSWOR_HT. We estimate the total of CATCH by (15) and get:
tur = Xh=1 Xkey WhiYnk = 691976,
where 1y, is the number of sample vessels in stratum h and Wy, is the weight for element £ in stratum h in Table

3.17 Part (a). For computing variance estimate of ty7 by (16) we compute the stratum-wise variance estimates
using the SRSWOR variance estimator:
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a2
Vsrr(En) = NZ (1 _17\;_:):1_’;’ H=1,..,h,

where 87 is the sample variance of target variable in stratum 4. Estimated stratum totals and variances are in
Table 3.18.

Table 3.18 Stratum estimates for SAMPLEDS5.

Stratum Total | Var of Total
Variable | # R
1 CATCH | 6|185322| 844469990

2 CATCH | 7|226925| 551281589

3 CATCH | 7279729 | 342431431

Sum 201691976 | 1738183010

The overall variance estimate (16) for £y is obtained by summing up the stratum-wise variance estimates:
Vsrr_srswor (Eur) = Xi=1Vsrr(r) = 1738183010 = 416922,

and s.e(fyr) = 41692. Variance formula shows that having internally homogeneous strata is beneficial for
improved precision.

Coefficient of variation (5) is calculated as:

A _ se(yr) _ 41692
CV(tHT) = tnr = 01976 0.060.

Design effect estimate (7) is computed as:

+ N\ _ VsTr srswor(tur) _ 41692%
deff(tyr) == Gy~ 223007 — 088
srswor(EuT

Coefficient of variation is quite small. The deff estimate indicates that stratification improves precision to some
extent when compared to estimates obtained by assuming SAMPLES5 as a SRSWOR sample without
stratification.

CASE (b) STR_PPSWOR_HT. We estimate the total of CATCH by the same formula as in (a) but with
different weights that are taken from Table 3.17 Part (b):

fHT = 22=1 Z;{lil WhkVYhk = 576254.

Estimated total computed from SAMPLEG happens to be much smaller than the estimate computed using the
stratified SRSWOR sample. For computing variance estimates of stratum totals £, we use the PPSWR variance
estimator (13):

- P np(1-fp) gn p
Vsrr(th) = %Zkil(whk:)/hk — tn/nn).

For the overall variance estimate (16) we obtain:
Vsrr_ppswr(tur) = Th=1Vn = 222822,
and s.e(fyr) = 22282. Coefficient of variation (5) is calculated as:

s.e(tyr) _ 22282

- = = 0.039.
Eur 576254

CU(fHT) =
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Design effect estimate (7) is computed as:

5 2 2
deff(fm") _ Vsrr ppswr(tur) _ 22282° 028

Vsrswor(ur) 422552 >

indicating that the strategy STR_PPSWOR_HT is very efficient in this case and would improve estimation
substantially when compared to a strategy SRSWOR_HT.

Estimation results for strategies (a) and (b) with PROC SURVEYMEANS are in Table 3.19. It can be observed
that stratification and HT estimation in connection with PPSWOR sampling turns out to be substantially more
efficient than stratification by HT estimation under SRSWOR, with the same stratification variable STR3 and
proportional allocation in both cases.

Table 3.19 Estimated totals, standard errors and coefficients of variation for variable CATCH from (a) stratified
SRSWOR sample SAMPLES and (b) stratified PPSWOR sample SAMPLEG of n = 20 vessels.

Method Variable | n vsv‘é;‘lft‘; Toftal S:.del(): 95% CL C“fiz’gvar
(a) STR_SRSWOR | CATCH |20 | 100.000000 | 691976 | 41692 | 604014.144|779936.990| 0060250
(b) STR_PPSWOR | CATCH |20 | 92.050773 | 576254| 22282 |529243.006 | 623265.260|  0.038667
True total CATCH 624036

Both stratified samples seem somewhat extreme because the estimated totals are far from the true total.
Estimated total is much larger than true value for the STR_SRSWOR_HT strategy and much smaller for the
STR_PPSWOR_HT strategy. It would be useful to examine closer the distributions of the HT estimates and
their standard errors empirically for example by simulation experiments.

3.6.5 Guidelines

In fishery surveys, stratification of the population before sample selection is recommended for situations where
sufficiently large sample sizes are required for the most important subgroups of the population for attaining a
desired precision level for the estimates. In these situations, a non-proportional allocation scheme is often
chosen, leading to an unequal probability type STR sampling design. Stratified sampling alone does not
necessarily improve precision substantially. For improved precision, additional auxiliary information may be
introduced in the sampling and estimation designs, such as PPS sampling of elements within the strata or
regression estimation for the overall sample or separately in each stratum.

Additional auxiliary information can also be introduced in the allocation scheme, by using optimal (Neyman)
allocation, which requires good approximations for the (unknown) stratum standard deviations of the target
variable, or power allocation, where good approximations of the stratum-wise CV:s of the target variable are
needed, in addition to known stratum totals of an auxiliary variable.

Stratification with SRS, systematic sampling or PPS sampling supplemented with a simple allocation scheme
provides often a manageable sampling design for a fisheries survey. When feasible, it is advisable to consider the
options for improving accuracy of estimates in the estimation phase. Model-assisted and calibration methods
provide flexible methods this purpose.

It is recommended that the availability of suitable stratification variables in different administrative registers and
related data sources are examined. If possible, these variables should be included in the sampling frame before
sampling operations.
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4 Model-assisted estimation and related methods

4.1 Estimation designs

The previous sections were devoted to sampling methods with special emphasis on the use of auxiliary
information in the sampling design. In this chapter, we extend the discussion to estimation methods that use
auxiliary information in the estimation design. These methods are applied in the analysis of the collected sample
data set. There are many good reasons for the use of auxiliary information in the estimation phase. A typical
descriptive survey can involve a variety of different target variables of interest. Because it is not possible to
optimize the sampling design for all these variables, a compromise sampling design is often implemented. The
compromise sampling design with the HT estimation strategy does not necessarily produce precise estimation for
all variables of interest. Therefore, an estimation design is often adopted that guarantees the desired precision for
population estimates and also for estimates for the important population subgroups.

For example, an equal probability sampling design can be applied for element sampling, possibly amended with
stratification and non-proportional allocation. After sample selection, an estimation design is implemented that
incorporates aggregate-level or unit-level auxiliary information and statistical modeling. Strategies of this type do
not rely on the HT estimation but on more flexible design-based model-assisted methods and calibration estimation.

The framework of model-assisted methods comprises simple linear fixed-effects models up to more complex
generalized linear mixed models, the model choice depending on the given statistical data infrastructure and the
complexity of the estimation problem at hand, as well as the preferred statistical framework. This chapter covers
the traditional model-assisted methods ratio estimation, regression estimation and post-stratification. Each of these
methods involves an explicit model statement, based on a standard linear models framework for continuous
target variables.

Examples of particular models underlying the traditional model-assisted estimators for population totals and
means are:

a) Regression models of the form y = By + By X1 + P2Xok + - + BpXpi + &k, where the covariates
(auxiliary) variables are considered continuous, e.g. vessel tonnage GT, days at sea DAS, etc. These
models act as assisting models in ratio and regression estimation. The estimated f-parameters and the
auxiliary variables are used in the construction of a ratio or regression estimator.

b) ANOVA (Analysis of variance) models, where the explanatory variables are categorical, e.g. variable
STR3 with three classes. These models are typical in post-stratification. Technically, models with
categorical explanatory variables can be formulated as regression models if desired, with class
membership indicator variables as the explanatory variables.

In the framework of generalized regression (GREG) estimation, the entire family of linear and generalized linear
models can be applied. For example, linear ANCOVA (Analysis of covariance) models involving both
continuous and categorical explanatory variables and their interaction terms can be implemented in a generalized
regression estimator, and logistic models for a binary target variable (e.g. ACTIVITY) and a set of continuous
and categorical explanatory variables can be incorporated in a logistic GREG estimator.

An important property of model-assisted methods is that estimators for totals discussed here remain (nearly)
design unbiased irrespective of the correctness of the assisting model. The model affects efficiency: with a
powerful model, precision will decline relative to HT estimation. A thorough presentation of model-assisted
methods is in Sdrndal, Swensson and Wretman (1992).

In model-assisted estimation, the auxiliary data are incorporated in the estimation procedure by models. A #odel-
free statistical framework is sometimes preferred leading to model-free calibration technigues. The approach was
introduced in Deville and Sirndal (1992). In model-free calibration (Sirndal 2007), an explicit model statement is
not required but the auxiliary information is incorporated in the estimation procedure via a weight variable. The
methodology is often called re-weighting, since the original sampling weights are adjusted appropriately for new
calibrated weights. The calibrated weights must satisfy certain conditions. By applying the calibrated weights to
an auxiliary variable , the weighted sum of sample observations of the auxiliary variable must coincide with the
known population total of the variable. The so-called calibration equation states:

YRt WeaLkXk = Lh=1Xk = ty, (17)
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where Weyy i is the new calibrated weight and Xy, is the value of the auxiliary variable for element k. The known
population total t, of the auxiliary variable is the sole auxiliary information needed for calibration estimation of
total for a target variable. The traditional model-assisted methods considered here also fulfil the calibration
equation (17) and thus, they can be expressed as calibration estimators.

In calibration estimation, efficiency is expected to improve over HT estimation if the target variable correlates
with the auxiliary variable. This can be seen by inspecting a simple variance approximation of a calibration
estimator of a total. The calibration estimator for total is £ca;, = D=1 Wear kVk and a simple estimator of the
approximate design variance is

V(tcar) = V(Eur) X (1 — corryzx). (18)

Obviously, efficiency improves over HT estimation as soon as the correlation corty, between variables ¥ and X
is nonzero. The same property holds for the model-assisted estimators.

The main aim of Chapter 4 is to target how and to what extent the precision can be improved over the
SRSWOR_HT strategy by making use of model-assisted methods as well as calibration methods under a simple
random sampling SRSWOR design. These methods offer much flexibility when compared to strategies such as
PPSWOR_HT, where a single auxiliary variable is applied. In stratified sampling and PPS sampling, the auxiliary
data are needed at the unit level in the sampling frame, whereas in the traditional model-assisted methods,
auxiliary data are needed at aggregate level, and unit-level values are only needed for the sample. Moreover,
multiple auxiliary variables can be imposed in the assisting model, e.g. a regression model, offering an option to
tailor the estimation design separately for each important target variable.

Basic estimation designs, target variable types, auxiliary variable requirements and assisting model types are
summarized in Table 4.1. We concentrate in this chapter on the classical model-free calibration method (c) and
the traditional model-assisted ratio and regression estimation and post-stratification methods (d), (e) and (f).

Table 4.1 Basic design-based estimation designs.

Auxiliary dat
Estimation design Target variable types o ‘1ary aa Assisting models
requirements
(1) Traditional model-free estimation
(a) Horvitz-Thompson type None
(HT)
(b) Hajék type (HA) Continuous, binary, Population or Non
count domain size one
(c) Model-free calibration Aggregate or
(CAL) domain level
(2) Traditional model-assisted estimation
(d) Regression estimation Linear fixed-effects regression
(REG) model
(e) Ratio estimation (RAT) Continuous Aggre.gate or Linear ﬁxeél—effects regression
domain level model (no intercept)
(f) Post-stratification ANOVA type linear fixed-
(POST) effects model
(3) Generalized regression (GREG) estimation and model-assisted calibration (MC)
(2) GREG family & MC Continuous, binary, Unit-level Members of generalized linear
family count, categorical models (GLM) family
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4.2 Ratio and regression estimation and calibration
4.2.1 Background

In ratio and regression estimation, the auxiliary information is incorporated into the estimation procedure by
using linear regression models with continuous target variable and a single continuous covariate (ratio estimation)
or several covariates (regression estimation). For a ratio or regression estimator, the known population totals of
the auxiliary variables are required, and the unit-level values are needed for the sample elements. If desired, the
methods can be expressed in the form of calibration estimators. In this section we discuss ratio and regression
estimation and calibration weighting. Post-stratification is treated in Section 4.3.

4.2.2 Sampling and estimation

Model-assisted and calibration methods are applicable under any sampling design, but a relatively simple
sampling design is often adopted, and efforts for precision improvement are devoted to the estimation phase.
We introduce the basic methods for the estimation of the population total and the derivation of the appropriate
variance, standard error and coefficient of variation estimates within the worked example section of each
method. In all strategies considered, the underlying sampling design is simple random sampling without
replacement.

4.2.3 Worked example

Preliminaries. We continue working with the set of active vessels in SIMPOP. Our target variable is again
CATCH. This selection allows us to compare the performance of the methods with methods that use (or, not
use) auxiliary data in the sampling phase. We assume that we have access to data on continuous type auxiliary
variables GT (vessel tonnage) and DAS (days at sea) and the binary variable DOMO1 (type of fishing).

We study the estimation strategies SRSWOR_CAL, SRSWOR_RAT and SRSWOR_REG, where the sample is
drawn from SIMPOP by SRSWOR and estimation relies on a ratio estimator or a regression estimator. The
strategy SRSWOR_HT serves as a reference strategy. We compare the results with the reference strategy by
computing standard error, coefficient of variation and design effect estimates. Different sample sizes are applied.

Sample selection. We use SRSWOR as the sampling design. Sample realizations are named SAMPLE7 and
SAMPLES, corresponding the SRSWOR samples SAMPLE1 and SAMPLE2 in Section 3.3.4. Both new samples
are amended with the selected auxiliary variables. Our first sample of size n = 5 active vessels from SIMPOP is
displayed in Table 4.2.

Table 4.2 SRSWOR sample SAMPLE7 of n = 5 active vessels drawn from SIMPOP of N = 100 vessels
amended with sample values of auxiliary variables GT, DAS and DOMO1.

Sampling
Obs CATCH /| GT |DAS|DOMO01
ID Weight
IS Yk X1k | X2k X3k
Wi
1 1| 3541.44)|280.0| 136 0 20
2 44| 4421.92)282.1| 165 1 20
3 49111355.97|386.1| 228 0 20
4 55| 6865.42|408.0| 213 0 20
5 93| 9942.19|440.7| 235 1 20
Sum 100

The selected auxiliary variables are x; (variable GT), x, (variable DAS) and x3 (binary variable DOMO01). We
assume that we have the population totals of these variables at our disposal. The totals are given in Table 4.3.
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Table 4.3 Population totals of the auxiliary variables.

Obs| GT | DAS |DOMO01

yy Ly, byq

[u—y

32896.4 | 18308 30

We need the population totals ty,, ty, and ty, of the auxiliary variables for the construction of the vatious
calibration, ratio and regression estimators.

Calibration estimation. In calibration estimation for the total of a target variable, we do not need to postulate
any underlying model. The calibration weights are obtained by computational operations directly on the target
and auxiliary variables.

We examine calibration estimation applied to ratio estimation for the total of CATCH. Let us take GT (vessel
tonnage) as the auxiliary variable. The sample is SAMPLE7. Building blocks for ratio estimation of CATCH total
are collected in Table 4.4.

Table 4.4. Components needed for the construction of a calibration estimator for CATCH total.

Variable | Source Component

CATCH | sample tyr = 722539
GT sample tury, = 35938
GT population | t,, = 32896.44

The estimation of the total can be executed by model-free calibration using the so-called g weights. We
construct calibration weights as a product of sampling weight and g weight:

Weark = Wi X gc = Wi X 2= = 20 X 0.91537 = 18.3073,,

HTxq

where the g weights are computed as

txy _ 32896.44 _
tHTx, 35938

0.91537

Ik =

i.e. constant for all sample elements, and the sampling weights are wy, = 1/, = 20. First, we check the
calibration property (17) by computing the calibrated total of the auxiliary variable GT and obtain

Yho1WigkXi = Dh=1Xk = ty, = 32896.44, sce Table 4.4. The calibration property thus holds.
Using calibration, the ratio estimate of the total of CATCH with GT as the auxiliary variable is computed as

fcar = o1 WeaLkYr = 18.3073 x 36126.94 = 661387.

For illustration, the components for calculating the ratio estimate with calibration are inserted in Table 4.5. The
sum of the components over the sample produces the ratio estimate. We discuss variance estimate for tc4y,
below in connection to ratio estimation.
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Table 4.5 SRSWOR sample SAMPLE7 of n = 5 active vessels drawn from SIMPOP of N = 100 vessels
amended with g weights, calibration weights and components for calibration estimation.

Sampling | Calibration
Obs CATCH | GT |g Weight Components
1D Weight Weight
k Vi X1k Ik Weark X Yk
Wi Weark
1 1| 3541.44(280.0| 0.91537 20 18.3073 64834.23
2 44| 4421.92(282.1| 0.91537 20 18.3073 80953.40
3 49| 11355.97 | 386.1| 0.91537 20 18.3073 207897.29
4 55| 6865.42|408.0| 0.91537 20 18.3073 125687.28
5 93| 9942.19 | 440.7| 0.91537 20 18.3073 182014.76
Sum 36126.94 100 91.5365 661387

Ratio estimation. Ratio estimator {47 of population total t = YN_ vk of the target variable is traditionally
constructed as

. R t
trar = thr X3 =~ (19)
HTx

where tyr = YRoq WYk is the HT estimator of the total of the target variable, t is the known population total
and Ty = Y=y WXy is the HT estimator of the auxiliary variable, and wy, = 1/, are the sampling weights.
It is important to note that for ratio estimation we only need the population total of the auxiliary variable. Unit-
level values of the auxiliary variable are only needed for the sample.

We use GT (vessel tonnage) as the auxiliary variable x; for ratio estimation of the total of CATCH. Building
blocks for ratio estimation are again taken from Table 4.4. Ratio estimate for the total of CATCH is computed
as:

Epar = tup X 21 = 722539 x 22824 _ 759539 x 0.91537 = 661387,

tHTx, 35938

i.e. the same estimate as was obtained with calibration estimation.

We discuss briefly ratio estimation as a model-assisted estimation method. In ratio estimation, the assisting
model is simple. The regression model is given by

Yk = P1X1k + &k,

where the slope parameter 81 for the auxiliary variable is the sole parameter to be estimated, and &, stands for
residuals. Note that the model does not involve an intercept term; it is assumed that the regression line goes
through the origin (recall a similar assumption in PPS sampling).

Ratio estimation can be proceeded as a special case of regression estimation by fitting the linear model Y, =

B1X1k + € and computing the ratio estimate by using the estimated [f-parameter and the known population

total of GT. In practice, the f-parameter is estimated by weighted least squares using sampling weights. For the
Enr

current SRS case we obtain a slope estimate f; = ; = 20.1051 that is equal to the estimated ratio 7. The
HTxq

ratio estimate of the total is now computed as
trar = tx, X By = 32896.44 x 20.1051 = 661387,

that is, numerically the same estimate as the previous ones.
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Variance estimation. Variance estimation for the ratio estimator £g 47 can be carried out first by presenting the
ratio estimator in the form

~ _ fHT _ A
trar = ly, P by, XT,
1

A fHT .. . .
where 7 = P— and writing the design variance as
HTxq

V(trar) = V(ty,7) = t2 X V(P). (20)

Various approximate estimators ¥(#) for the nonlinear estimator 7 of the ratio of two HT estimated totals and
D(trar) for the total Eg4p are available in the literature, e.g. Cochran (1963), Sirndal et al. (1992), Lehtonen &
Veijanen (2009), as well as in software documentation (e.g. SAS procedures SURVEYMEANS and
SURVEYREG and R survey function calibrate). In addition to the linearization method,
pseudoreplication methods are available by the software products, e.g. SAS SURVEY procedures. The methods
include the jackknife technique and balanced half-samples method. Variance estimators 9(#) for 7 in eq. (20) are
implemented for example in the SAS procedure SURVEYMEANS. If the population total ty ~of the auxiliary

variable is available, it is straightforward to compute an estimate V(g a7).

Many of the approximate variance estimators methods for ratio estimator as well as regression and calibration
estimators rely on the estimation of residual variance, where residuals are computed under the fitted model as
ex = Yx — Yk. This approach is used for example in the SAS procedure SURVEYREG, For a ratio estimator

the fitted values are ¥, = 1 X1k.

A simple variance estimator for tpa7 based on a residual variance estimator is given by

1-f) (n—-1 n
n )(n ) ho1(Wiex — tyre/n)?, 1)

n-1 \n-p

121 (fRAT) =

where tyre = Yipeq Wie is the HT estimator of residual total, e, = Y, — J are residuals with fitted values

o 5 5 _ A tur . , n. . . :
Vi = B1X1k from the model, f; =7 = ; HT is the estimated slope term, f = 5 is the sampling fraction and p is
HTx1

the number of model parameters. A g weighted version is often preferred, given by

n(1-f) (n-1 a
( ) k=1(Wrgrer — tcare/n)?, (22)

n-1 \n-p

12 (fRAT) =

txy

where g = ——— gweights and Ecgre = Y ko1 Wi Gk is the g-weighted residual total estimate. This type
1

of variance estimator is used for example in the SAS procedure SURVEYREG. Variance estimators (21) and (22)
are asymptotically equivalent, because the g weights tend to unity with increasing the sample size.

Variance estimator V3 (Egar) for Lpar resembling the standard variance estimator for a ratio estimator of total
(e.g. Lehtonen & Pahkinen 2004 p. 98) is often used in practice and is given by

n(1-—

V3(trar) = /) Yhe1 WGV — Wi x11)?, (23)

n-1

where 7 = ftHT . The estimator also uses the g weights. The SAS procedure SURVEYMEANS (RATIO

HTxq
statement) does not compute (23) directly but computes an estimate for the ratio 7 given by

U3(F) = 1/t5, X V3(Egar).
We obtain:
V3(Epar) = t,%l x V3(f) = 32896.442 x 8.01513 = 931332,

Numerical results from equations (21) and (22) do not differ much from an estimate using the variance estimator

23).

With a powerful auxiliary variable, variance estimates D(£g47) can be substantially smaller than a HT variance
estimate V(£y7), because the variation between residuals will be smaller when compared with the variation of the
original values of target variable.
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To complete, we compute vatiance estimate V3() and standard error estimate S. e(#) by using the
SURVEYMEANS procedure. Results are in Table 4.6. The estimate se(€gar) also is included. The results (see
also Section A:0) agree with results computed with the R survey function calibrate (Section B.7.2).

Table 4.6 Estimation of the ratio # for the SRSWOR sample SAMPLE7 of n = 5 elements computed with
PROC SURVEYMEANS, amended with results for the ratio estimate £g 47

Ratio Analysis

Numerator | Denominator Ratio Std Err | Total | StdErr

4 s.e(f) fRAT se (fRAT)

CATCH GT 20.105147 | 2.831090 | 661387 | 93133

Coefficient of variation (5) for gy is calculated as:

s.e(trar) _ 93133 0.14.

cv(Crar) = frar 661387

Design effect estimate (7) of tpar is:

2 _ Vsrswor(frar) _ 93133% _
deff(trar) = = Gy — 178237 = 0.40.
srswor(EnT

It should be recognized that in the deff formula, the estimators for the total in the numerator and denominator
are different. The SRSWOR variance estimator in the numerator is for the ratio estimator £g47 and in the
denominator, it is for the HT estimator £y7. Because the deff estimate is smaller than one, the SRSWOR_RAT
strategy is more efficient than would be a SRSWOR_HT strategy for SAMPLE7.

We finally execute ratio estimation by the SAS procedure SURVEYREG, which is aimed to design-based
regression modeling. The model yy, = B1X1 + & is first fitted for the sample data set and the ratio estimate is
obtained by the ESTIMATE statement. Results are in Table 4.7. The sample is the one displayed in Table 4.2. The
results agree pretty closely with the previous ones. Differences to Table 4.6 results are caused by the slightly
different computation algorithms in the SAS procedures. The differences vanish with large samples.

Ratio estimation involves biased estimation, except in the theoretical case where the intercept term 8 of the
regression model Y, = Bo + B1X1x + € is zero. The order of the bias is 1/#, indicating that with a small sample
size the bias can be substantial.

Table 4.7. Ratio estimation by the SAS procedure SURVEYREG for a SRSWOR sample SAMPLE7 of n = 5
elements.

a) Estimated ff-parameter b) Auxiliary information provided
Estimated Regression Coefficients Estimate Coefficients
. Standard Effect Rowl
Estimate E t Pr>
Parameter rror ¢
Bl . Value | t] x1
se(f1)
GT 32896
GT 20.6761657| 2.72832884 7.58 | 0.0016
By
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¢) Ratio estimate of CATCH total by ESTIMATE statement

Estimate
Label Estimate | Standard Error
trar s.e(trar)
CATCH total | 680171 89752

Regression estimation. We apply regression estimation to the estimation of the total of target variable CATCH
under a SRSWOR sample, thus the strategy is now SRSWOR_REG. The variable GT (vessel tonnage) acts first
as the auxiliary variable. The sample data set remains as SAMPLET7 also for this analysis.

Regression estimator for a total uses a linear fixed-effects regression model as the assisting model. In the simplest
case with a single auxiliary variable, the model is of the form:

Yk = Bo + BiXx1x + &k, (24)

where X, are values of the continuous auxiliary variable and & are residuals. Note that the assisting model now
involves an intercept term.

The model parameters intercept §y and slope f; are first estimated by weighted least squares with sampling
weights. By inserting the HT estimate tyr of CATCH and HT estimate ppy , of GT together with the known

population total ty of GT (Table 4.4) as well as the estimated slope f; into the textbook formulation of a
regression estimator (Lehtonen & Pahkinen 2004 p. 97):

tree = tur + B (tx, = turx,), (25)
we get an estimate fREG = 722539 + 37.4647(32896.44 — 35938) = 608586.

For variance estimation we use the textbook estimator for regression estimation (Lehtonen & Pahkinen 2004 p.
98) that is based on the linearization method, given by:

A ~ _ 2 n 1 n-1 A2
Vsrswor (trec) = N“(1 — - (;) (E) X SecaLs (26)

where §QZCAL is the sample variance of g weighted residuals gpex = gx (Vi — Yx) with fitted values J, = Bo +
B1x1) from the model, and p is the number of model parameters. The residual variance estimator is given by
§eZCAL =Y _.(grex — €)% /(n—1) with & = Y}_; grex/n , the mean of g-weighted residuals.
Pseudoreplication methods can be used as an alternative.

We execute the estimation by the SAS procedure SURVEYREG using estimator (26). In Table 4.8, estimation
results for model (1) are displayed in Part a), including the estimates of the f-parameters and standard errors.
Part b) contains the auxiliary information ty, and ty, supplied, where variable X refers to the intercept.
Regression estimate trEc for the total, with standard error estimate and confidence interval, is obtained by the
SURVEYREG statement ESTIMATE. SAS results in tables 4.8 and 4.10 agree with R survey function svyglm

results except for the constant (n — 1)/(n — p) of the SAS vatiance formula (26) (sections A.6 and B.7.3).
Regression estimation is also illustrated in Section 8.2 (the case study for Finland).

45



Table 4.8. Regression estimation by the SAS procedure SURVEYREG for the SRSWOR sample SAMPLE7 of
n =75 clements.

a) Estimated f-parameters b) Auxiliary information provided

Estimated Regtession Coefficients Estimate Coefficients
Effect Rowl
Parameter | Estimate Standard t Value | Pr > |t]| e il
Error
Intercept
Intercept 100
B -6238.6791 | 2363.59006 -2.64 0.0576 txo
0
GT
GT
37.4647| 853363 439| 00118 32896
B1 by

¢) Regression estimate of CATCH total by ESTIMATE statement

Estimate
Estimate | Standard Error Lower Upper
Label R R Alpha R R
trEG s.e(trec) LCL(tggg) | UCL(tgEq)
CATCH total| 608586 78985 0.05 389288 827884

We next compute the coefficient of variation (5) and design effect estimate (7) for tgge:

Coefficient of variation: cv(fgrgg) =

s.e(trgg) __ 78985

Design effect estimate: : def f(fggs) =

tREG

608586

=0.13

Vsrswor (Ereg) _ 789857

= 0.28

VUsrswor(Eur) 1478232

Regression estimation with a single auxiliary variable GT appears effective for the CATCH total. Coefficient of
variation is 13%, smaller than the SRSWOR_HT counterpart 20%. The deff estimate for the SRSWOR_REG
strategy also indicates substantial improvement of statistical efficiency over the SRSWOR_HT strategy.

Extension of regression estimation for multiple auxiliary variables is straightforward. Let us take the variables
GT, DAS and DOMO1 in the model. The model is now of the form:

Vi = Bo + BiX1k + BaXok + P3Xzk + . 27
We fit model (27) for SAMPLES of # = 20 units. The multiple regression estimator is given by:
trec = tur + P (tx, = ture,) + B (tx, = ture,) + B3 (tx, — turx,)- (28)

Materials for computing tgge with equation (28) under model (27) are summarized in Table 4.9. Estimated
slopes are given in Part a) of SURVEYREG output presented in Table 4.10. We obtain:

tree = 610603 + 20.5547(32896.44 — 31255) + 33.3466(18308 — 18680) — 545.3683(30 —
40) = 637401,
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Table 4.9. Components needed for the construction of a regression estimator for CATCH total with three
auxiliary variables under SAMPLES of n = 20 elements.

Variable | Source Component

CATCH | sample fur = 610603

GT sample tyre1 = 31255

GT population ty, = 32896.44

DAS sample turez = 18680

DAS population ty, = 18308

DOMO1 | sample Eyres = 40

DOMO1 | population ty, =30

Coefficient of variation is cv(Eggg) = % = 0.048 and def f (trgc) = ;%:22 = 0.32. The cv for

SRSWOR_HT strategy was cV(Esrswor) = 0.089 indicating better efficiency for strategy SRSWOR_REG.

Table 4.10. Regression estimation for CATCH with GT, DAS and DOMO1 as auxiliary variables by SAS
procedure SURVEYREG for the SRSWOR sample SAMPLES of n = 20 elements.

a) Estimated f-parameters b) Auxiliary information provided
Estimated Regression Coefficients Estimate Coefficients
Parameter | Estimate| Standard |t Value|Pt > |t| Effect Rowl
Error
Intercept
Intercept 100
8 -6329.2340 | 1657.38173 -3.82 0.0012 txo
0
GT
GT
205547 506384  4.06| 0.0007 . 32896
B1 *1
DAS DAS
33.3466 6.22707|  5.36| <.0001 18308
ﬁz tx 2
DOMO1 DOMO1
-545.3683 | 561.62140 -0.97 0.3437 30
B3 txg
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) Regression estimate of CATCH total by ESTIMATE statement

Estimate
Estimate | Standard Error Lower Upper
Label R R Alpha R R
tREG s.e(trge) LCL(tree) | UCL(ERec)
CATCH total | 637401 31040 0.05 572433 702369

Simulation experiment. For comparing the average capacity of strategy SRSWOR_REG with SRSWOR_HT
we conduct a small pedagogic simulation experiment. We draw K = 100 SRSWOR samples of size n = 20
vessels from SIMPOP, compute the estimated total, s.c and cv for the regression estimator tggg under the
SRSWOR_REG strategy and the HT estimator £ under the SRSWOR_HT strategy from each sample, and
compute the mean of the statistics over the 100 samples. Auxiliary variables are GT, DAS and DOMO1. The
results are in Table 4.11.

The average standard error of ggg is smaller than that of £y, leading to better efficiency for strategy
SRSWOR_REG. This is further manifested by the coetficients of variation: average cv for REG estimator is 4%
and average cv for HT estimator is 7%. The results also indicate the design unbiasedness of the regression
estimator. It thus seems that the application of regression estimation makes sense.

Table 4.11 Means of estimated totals, standard errors and coefficients of variation for CATCH from K = 100
simulated SRSWOR samples of size n = 20 vessels from SIMPOP for strategies SRSWOR_HT and
SRSWOR_REG with GT, DAS and DOMO1 as auxiliary variables.

Averages over simulations

Strategy VarName | Replicates Total | StdDev CV
SumWgt n R R R
t s.e(t) | cv(t)
SRSWOR_REG | CATCH 100 100.000000 | 20 | 626600| 26163 0.041837
SRSWOR_HT |CATCH 100 100.000000 | 20 | 626895| 44061 0.070264
True total 624036

4.2.4 Estimation for domains

We continue with the estimation for population subgroups or domains where the sample size in domains is not
controlled by stratification but is a random variate; the domains are thus of uuplanned type. In Section 3.3.4 we
used the strategy SRSWOR_HT for the estimation for unplanned domains under the conditional approach
(variances of estimators were computed conditionally on the observed domain sample sizes) and the
unconditional approach (the randomness of domain sample sizes were accounted for by using the extended
domain variables technique). We use here ratio estimation applied separately for the two domains, thus

resembling the conditional approach for estimation for unplanned domains. The strategy adopted thus is
SRSWOR_RAT.

The analysis is executed independently for the two domains by the SAS procedure SURVEYMEANS (RATIO
statement). As the domain variable we use the two-category variable DOMO1. For auxiliary information we use
the known domain sizes Ng = 70 and N; = 30 in population. CAT'CH is the vatiable of interest.
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For domain ratio estimation of CATCH totals with DOMO1 as the two-category domain variable we use the
SRSWOR sample SAMPLED of size n = 20 vessels. The distribution of the sample over the domains is
Ny = 12 for the first domain and n; = 8 for the second, as presented in Table 4.13.

. . . . . A A 3 N t .
A domain-specific ratio estimator can be written as tgpar = Faur X Ng = %Nd where Tayr = % is the HT
d d

estimated ratio, Ny is the known domain size in population and Ny = ¥ e 4 Wk is the HT estimated domain

size, and fqpr = Ykes, WYk Here Ny = 60 and Ny = 40.

We obtain:
— DOMO1=0: fopar = %NO = 222 X 70 = 489459
— DOMO1=1: fipup = %Nl = 22720 X 30 = 143301

HT estimates topr and &1y are from Table 3.11. For variance estimation we apply the standard SRSWOR
variance formula of ratio estimator (Lehtonen & Pahkinen 2004 p. 93) separately for each domain, given by

. . 1 R
Usrswor (Earar) = N§ ( - Z—Z) (n_d) Yresy Uk — FanrXar)®/(ng — 1),

where x4 = 1 for k € s, in this case. Here Tyyr = 6992.266 and 71y = 4776.687. We obtain:
~ DOMO1=0: ¥(Eopar) = 702 (1 22) (<) x 103228219.96/(12 — 1) = 563487
~ DOMOI=1: ¥(E1par) = 302 (1 — ) (5) x 103228219.96/(8 — 1) = 128367
Results are collected in Table 4.11. A comparison with Table 3.11 indicates that our results under

SRSWOR_RAT strategy are close to those from strategy SRSWOR_HT for the conditional approach for
variance estimation with using the known domain sizes in population.

Estimators of domain totals using known domain sizes as auxiliary information can also be derived as Hajék type
. 2 Ng o .. . . . . .
estimators Egyq = ﬁ—d tqyr giving the same numerical results as the ratio estimators in Table 4.12. Variance
d

estimation for ratio and Hajék type estimators for domain totals is discussed in Lehtonen & Veijanen (2009) p.
241-242.

Table 4.12 Estimation of CATCH totals for two unplanned domains under strategy SRSWOR_RAT computed
for SAMPLEDY of size n = 20 vessels.

DOMAIN Total Std Dev Coeff of Var
Variable | n | Sum of Weights | . R
d trara | S-€(trara) | cV(trar,a)
0 CATCH |12 60.000000| 489459 | 563482 0.11512
1 CATCH| 8 40.000000 | 143301 128362 0.08957
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4.3 Post-stratification
4.3.1 Background

Discrete or categorical auxiliary information can be used in stratification of a sample after it has been drawn (post-
stratification). The idea in post-stratification, similarly as in stratified sampling (Section 3.06), is to make the
estimation more efficient by selecting post-strata where the within-stratum variation of the variable of interest is
smaller than the variation between the strata. Auxiliary information for post-stratification is often obtained from
official statistics or some other reliable source. Post-stratification can also be used in the adjustment of unit
nonresponse in surveys (Chapter 5).

4.3.2 Sampling and estimation

Similarly as for ratio and regression estimation, post-stratification is applicable under any sampling design, but a
relatively simple sampling design is often adopted such as simple random sampling or stratified SRS.

Post-stratification estimator of a population total is given by

. _vC 7 _wC v
tposT = Xé=1tc = Xé=1 ko1 WPOST,ckVk> (29)

where Wposr ck are post-stratum weights for element k in post-stratum ¢ derived for the entire sample. Post-
stratum weights in (29) are

Wpost,ck = 9ckWck»

where gcx = N/ N, and the denominator No = Y, 2 Wey is the estimated post-stratum size, and wex = 1/Tg

are the original sampling weights. For variance estimation, the post-strata may be regarded as unplanned domains
(see sections 2.5, 3.3.4 and 4.2.4).

4.3.3 Worked example

Preliminaries. We continue working with the set of active vessels in SIMPOP and the target variable CATCH.
Post-stratification is introduced as a calibration method in a simple and well manageable case. In the method, we
assume an access to a single categorical auxiliary variable suitable for post-stratification. The binary variable
DOMO1 (fishing type) is chosen, which indicates whether a vessel catches "expensive" fish (DOMO1 = 1) or not
(DOMO1 = 0). Two post-strata will be constructed under the given sampling design.

We study the estimation strategy SRSWOR_POST, where the sample is drawn from SIMPOP by SRSWOR and
the estimation relies on post-stratification. The strategy SRSWOR_HT serves as the reference strategy. We
compare the results with our reference strategy by computing coefficient of variation and design effect estimates.

Sample selection. The SRSWOR sample is SAMPLEDY, corresponding to the SRSWOR sample SAMPLES in
Section 4.3. The original sample contains the values of the ID variable, target variable CATCH, auxiliary variable
DOMO1 and the sampling weight. The sample data set has been amended with five derived variables that are
used in constructing the post-stratification estimator. A two-class variable POST2 with value 1 (if DOM=0) and
2 (if DOM=1) has been created for post-stratum identification. To illustrate post-stratification by calibration we
use a sample size 1 = 20 active vessels from SIMPOP. The complete data set is displayed in Table 4.12. The
sample data set is sorted by the post-stratification variable.

Estimation. The binary auxiliary variable DOMO1 is selected for post-stratification. We execute the estimation
of the post-stratified estimate £pggr with the calibration technique, based on reweighting. For calibration we
compute g weights and calibrated weights for the two post-strata. Data for g weights consists of the population
distribution and weighted sample distribution of the variable POST2, given in the set-up below:

Level | n R
Variable N | N,
¢ ng
1 12170 | 60
POST?2
2 8130 |40
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. . . . N, . .
Using notation of Section 4.3.2, ¢ weights are computed as gy = IV_Z’ where N, is known size of post-stratum ¢

and N, = chzl W is the HT estimate of N;, ¢ = 1,2, where wgg, = 5 is the SRSWOR sampling weight. We
get for post-stratum 1: g = % = Z_?) = 1.16667 and for post-stratum 2: g = % = % = 0.75.Theg

1 2
weights are included in Table 4.13. Calibrated weights in Table 4.13 are computed as Wposr ck = Wek X Gek-

The sum of the final column in the table provides the post-stratified (calibration) estimate £pggr of CATCH.
The estimate is thus computed by (29) as

tpost = Zg=1 chzl Wpost,ckYk = 632759.

We execute post-stratification by the SAS procedure SURVEYMEANS using the POSTSTRATA statement. The
procedure estimates totals, standard errors and cv:s by using the post-stratification (calibration) weights Wpogsr ok
instead of the original sampling weights wy. Variance estimate for £pggr is computed by equation:

N p . . 2

V(tpost) =1 (1 - %) et ZZ=1(WPOST,Ckyk - tPOST,C/nC) /(n—1), 30)
Where fPOST,l = 4894’59 and fPOST,Z = 143301 We Obtﬁil’l:

D(Eposy) = 20 X (1 - 1’%) x 3708808885.8/(20 — 1) = 55885.662.

Table 4.13 SRSWOR sample SAMPLE9 of n = 20 active vessels from SIMPOP of N = 100 vessels completed
with sample values of auxiliary variable DOMO1 and five derived variables.

Sampling g Post-
Obs CATCH [ DOMO01 | POST2 Components
ID Weight | Weight | Weight
& Vi X3k ¢ WposT,ck X Yk
Wek 9ere | WPosT,ck
1| 1| 3541.44 0 1 5| 1.1667 5.833 20658.46
2| 9| 275296 0 1 5| 1.1667 5.833 16058.98
3129 751896 0 1 5| 1.1667 5.833 43860.73
4| 41| 3651.90 0 1 5| 1.1667 5.833 21302.81
5| 47| 8715.89 0 1 5| 1.1667 5.833 50842.84
6| 56| 6185.86 0 1 5| 1.1667 5.833 36084.29
7| 63| 10270.01 0 1 5| 1.1667 5.833 59908.56
8| 68| 11693.89 0 1 5| 1.1667 5.833 68214.55
9| 69| 8709.47 0 1 5| 1.1667 5.833 50805.39
10 71| 4031.71 0 1 5| 1.1667 5.833 23518.38
11| 78| 6219.11 0 1 5| 1.1667 5.833 36278.25
12| 94| 10615.99 0 1 51 1.1667 5.833 61926.79
13| 7| 20642.64 1 2 5] 0.7500 3.750 9909.90
14| 20| 4158.35 1 2 5] 0.7500 3.750 15593.81
15| 22| 3538.14 1 2 5] 0.7500 3.750 13268.03
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Sampling g Post-
Obs CATCH [ DOMO01 | POST2 Components
ID Weight | Weight | Weight
& Vi X3k ¢ Wpost,ck X Vi
Wek Yek  |WPOST,ck
16| 24| 4962.48 1 2 5] 0.7500 3.750 18609.30
17| 34| 4363.01 1 2 5] 0.7500 3.750 16361.29
18| 37| 6682.50 1 2 5] 0.7500 3.750 25059.38
19| 51| 6638.87 1 2 5] 0.7500 3.750 24895.76
20| 79| 5227.51 1 2 5] 0.7500 3.750 19603.16
122120.68 100 20| 100.000 632760.63

Results in Table 4.13 by the SAS procedure SURVEYMEANS agree with results from the R survey function
postStratify (sections A.7 and B.8.2).

Post-stratification resembles stratified sampling, but there are certain differences. In stratified sampling, stratum
sample sizes are fixed by sample allocation. In post-stratification, post-strata are created after sample selection
and there is no underlying allocation scheme. Post-stratum sample sizes are not controlled by the sampling
design but are random variates, similarly as for unplanned domains under the unconditional approach. In
SURVEYMEANS the variance estimate is computed using the conditional approach given observed post-
stratum sizes (i.e. assuming they are fixed quantities) and thus, the randomness of post-stratum sizes is not
accounted for. This leads to somewhat liberal variance estimates at least in small samples, because the
unconditional variance estimates would be larger (see details e.g. Lehtonen & Pahkinen 2004 pp. 89-92).

Estimated coefficient of variation (2) and design effect (7) for Epggr are the following.

s.e(tpost) __55885.66

—  Coefficient of variation: cv(t = — = 0.088
v (trost) tposT 632759
. . 2 v 3 55885.662
—  Design effect estimate:  def f (tposr) = fRSWOR( {’OST) = — = 1.05.
Vsrswor(EnT) 54439

Coefficient of variation estimate of 8.8% is reasonable for practical purposes. The deff estimate indicates that
nearly equal efficiency would be obtained by strategies SRSWOR_POST and SRSWOR_HT. Results for strategy
SRSWOR_POST computed with SURVEYMEANS are summarized in Table 4.13. Estimates for SRSWOR_HT
of Section 3.3.4 are also given.

It can be seen that post-stratification does not improve relative precision much in this case. A certain benefit still
remains. By post-stratification estimation, the sample distribution of DOMO1 will coincide with that in the
population. This property is called coberence and is appreciated in official statistics. It is often considered feasible
that marginal distributions (or totals) of auxiliary variables in a survey reproduce the published official statistics
of these variables. By using data in Table 4.14 we get fPOST,x:; =¥2_ chzl Wpost,ckX3k = 3.750 X 8 = t,, =
30.

Table 4.14 Estimated totals, standard errors and coefficients of variation for CATCH under strategies
SRSWOR_POST and SRSWOR_HT computed for SAMPLEY of size n = 20 vessels.

Total |Std Dev
Strategy Variable | n | Sum of Weights N ) 95% CL Coeff OAf Var
£ s.e(®) cv(t)
SRSWOR_POST | CATCH |20 100.000000 | 632759 | 55889 |515782.798 | 749735.535| 0.088325
SRSWOR_HT |CATCH (20 100.000000 | 610603 | 54439 |496661.885 | 724544.886 | 0.089156
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4.4 Comparison of model-assisted estimates

We finally compare the efficiency of ratio and regression estimation and post-stratification in the estimation of
CATCH total under the same SRSWOR sample of n = 20 elements that was used in Sections 3.3.4, 4.2.3 and
4.3.3. As auxiliary data we use the two-category post-stratification variable POST2 under strategy
SRSWOR_POST, the continuous variable GT under SRSWOR_RAT and GT, DAS and DOMO1 for
SRSWOR_REG. Results are in Table 4.15.

Obviously, a clever use of auxiliary information in model-assisted estimation can improve substantially the
efficiency of estimation when compared to HT estimation for a simple random sample. Regression estimation
offers a flexible tool for efficient estimation with multiple auxiliary variables requiring minimal auxiliary
information.

Table 4.15 Estimated totals, standard errors, coefficients of variation and design effects for CATCH under
strategies SRSWOR_HT, SRSWOR_POST, SRSWOR_RAT and SRSWOR_REG, computed for SAMPLEY of

size n = 20 vessels.

Ausxiliary Total |Std Dev| C°¢ff Deff

Strategy n Data : s.e(d) of \:}r(i;)tion deff(®)
SRSWOR_HT |20 none 610603| 54439 0.089156 | 1.00
SRSWOR_POST | 20 POST2 632759| 55889 0.088325 | 1.05
SRSWOR_RAT |20 GT 654899 | 46310 0.070713 | 0.72
SRSWOR_REG |20|GT, DAS, DOMO1 | 637401| 31040| 0.048698 | 0.32
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5 Treatment of nonresponse

5.1 Introduction

Nonresponse is common in surveys where sample data are collected by direct data collection methods such as
personal interviews and postal questionnaires. Missing data can sometimes also appear in administrative registers.
In the course of data collection some information may be lost, the main reason being unit nonresponse. The
number of records in the sample data set will be smaller than intended. If the sample size was not inflated
beforehand by an anticipated nonresponse, the precision of estimates will be weaker than would be with the
original sample size. The set-up below shows how missingness affects the analysis data set.

Type of missingness Effect on the analysis data set

Unit nonresponse The whole data record remains missing (or all items were rejected)
Item nonresponse One of more items for one or more variables are missing/are rejected
Sub-unit or partial nonresponse | All data from one or more elements within a cluster are missing

Nonresponse causes selection bias in estimates if the responding and nonresponding sets of the sample differ with
respect to the distribution of survey variables. Various methods have been proposed in the literature to adjust for
selection bias. Major adjustment methods assume zgnorable nonresponse, whete response mechanism, 1.e. an unknown
stochastic process that generates response or non-response in survey, is independent on the target variable of
interest when conditioning on one or several auxiliary variables. The selection bias can then be adjusted for by
conditioning on the covariates, for example by inserting the auxiliary variables as covariates in a nonresponse
model. Under a more setious non-ignorable nonresponse, selection bias does not vanish after conditioning on the
covariates. This type of missingness is difficult to be handled. Sometimes an assumption of a completely random
missingness 1s made, i.e. missingness does not correlate with the survey variables. Unfortunately, the assumption of
no selection bias is rarely in effect in real world.

Some common methods for dealing with missingness in survey are introduced in this chapter. These include
imputation methods (mean imputation, hot deck imputation and regression imputation) for adjusting for item
nonresponse and reweighting methods for unit nonresponse adjustment, such as the response homogeneity
(RHG) technique. In the worked example section (Section 5.5) we apply methods of Chapter 4 (regression
estimation and post-stratification) for adjusting missingness in a survey. Methods dealing with nonresponse are
discussed widely in the literature, for example Groves et al. (2002), Lehtonen & Pahkinen (2004), Sirndal &
Lundstrém (2005), Enders (2010) and Little & Rubin (2014).

5.2 Response mechanism

Various hypothetical response mechanisms have been suggested in the literature. Under a wmissing completely at
random (MCAR) mechanism the probability of missingness is independent on the observed or missing data. This
option is rarely in effect in real world. If the probability of response depends only on the observed data,
missingness is said to follow a wissing at random (MAR) mechanism. The MAR assumption is the most common
in surveys, and many methods and programs for the adjustment of selection bias caused by the missingness are
relying on this assumption. Thirdly, if the probability of nonresponse depends both on observed and missing
data, response mechanism is defined as #o? missing at randomr (NMAR). From the three mechanisms the NMAR
assumption is the most difficult to address as the missing values remain unknown (Heeringa et al. 2017).

5.3 Traditional nonresponse treatment methods

There are numerous traditional nonresponse treatment methods available and if the number of the missing
values is relatively small or the response mechanism can be assumed ignorable the methods may provide a quick
fix to the problem. Four traditional methods are described.
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5.3.1 Case deletion methods

One of the simplest and probably the most popular traditional nonresponse treatment methods is the case deletion
methods where records are removed from data matrix if they contain any missing information. In the complete nnit
deletion every unit with any missing item values is deleted before the analysis. This kind of deletion leads to a
complete data set that is easy to analyze but may setiously distort the estimation results if the assumption of the
MCAR mechanism is not in effect.

For painvise deletion method, units with missing item information are not removed from the analysis data set but are
‘dropped out’ when these units cannot be used in a specific analysis. The number of observations, therefore,
might change for example in computing several pairwise correlation coefficients and fitting regression models
with different sets of covariates. If not otherwise specified, the pairwise deletion is the default treatment of
missing items in most statistical software packages. Generally, the deletion also wastes data and leads to
decreased statistical power. It cannot, therefore, be recommended unless the amount of missing data is trivially
small (Enders 2010).

5.3.2 Mean imputation

One popular traditional method is wean imputation where missing values are replaced with some kind of mean
value statistics. This approach is easy to understand but it can seriously distort the parameter estimates as the
replaced values are ‘forced’ to the mean values. Intuitively it is clear that the use of the mean values decreases
variance estimates.

5.3.3 Hot-deck imputation

Imputation is called hot-deck imputation when missing values are replaced with real observations of the same
variable taken from donors. The method may be supplemented by drawing the donors from groups of similar
observations. Hot-deck imputation does not necessarily underestimate the variance estimates as much as mean
imputation but can produce biased estimates for the measures of association (e.g. correlations, regression
estimates).

5.3.4 Regression imputation

In regression imputation a regression model is specified to predict the missing values by using the estimated model
parameters and a set of covariates. Missing values are replaced with predicted values P = X 'E , where X, is a
vector of covariate values for unit k andﬁ is the vector of estimated model parameters. If several analysis
variables are imputed, different regression specification might be needed for each variable. Even though
regression estimation is superior when compared to mean imputation, it can lead to overestimation of
correlations.

Stochastic regression imputation is a modified version of the ordinary regression imputation. After the specification of
regression model, normally distributed random numbers (ui ) are generated and attached to the predicted

values ¥, giving modified predictions 5 = x;'B + u; . When compared to the regression imputation, the extra
step restores some of the original variation of the variable and leads to unbiased parameter estimates under the
MAR response mechanism (Enders 2010).

5.4 Reweighting for unit nonresponse

For unit nonresponse, complete records may be missing. As the sample data set is smaller than intended,
standard errors are increased. More importantly, estimation may be biased if the missingness is selective.
Adjustment for selection bias can be done with reweighting methods by suitably modifying the original sampling
weights.

Assuming estimated response propensities Oy; k € s, where s is the original sample of 7 units, modified sampling

weights can be written as Wy, = 1/ (T[ kék)- Estimated response propensities can be obtained for example by
fitting a logistic regression model on a binary variable having value 1 for respondents and 0 for nonrespondents
with covariates that explain the missingness and whose sample values are available both for respondents and
nonrespondents.
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Further, with a naive assumption of constant response propensity 8y, for all population units, a reweighted
Horvitz-Thompson estimator for total is given by

2 —_ A-1y"™
trur = 077 X1 WiV

where 7, is the number of responding sample units and § = Ny /M is an estimator of the common response
propensity. It is, however, preferable to model the structure of the response probabilities in greater detail. A
straightforward modification is the response homogeneity group method RHG method), where the population is
divided into C response groups such that estimated response propensity 8, is assumed equal in response group ¢

but can differ between groups. Propensities 8 are obtained in a similar manner as for fgy7. The RHG estimator
for total is given by

A ~\—1 n )
trHG = 25:1(9c) Yker WekYeks

where 8, = Ny /N (Lehtonen & Pahkinen 2004).

5.5 Worked example

Preliminaries. We examine here the applicability of model-assisted and calibration methods for the adjustment
for the possible bias due to nonresponse. Adjustment for nonresponse is discussed for the case where some
measurements or entire records are missing for the target variable. If aggregate level or unit level auxiliary
variables and their complete sample values are available, the model-assisted methods and calibration techniques
of Chapter 4 can be used. Adjustment may be effective if the response mechanism is of sgnorable type so that the
response mechanism may correlate with the auxiliary variables but not with the target variable. We examine
nonresponse adjustment with a single auxiliary variable. The methods can be readily extended to multiple
auxiliaries case.

Sample selection. We assume that the original # = 20 element sample has been drawn by SRSWOR from
SIMPOP. The realized sample SAMPLE10 is the one we had in Section 4.4.4. Target variable is CATCH, and
the continuous variable GT and categorical variable POST5 have been taken from the sampling frame and
merged with the sample data set. POST5 was created by dividing GT into five equally-sized classes. GT is aimed
for regression estimation and POSTS5 is for post-stratification.

Because of unit nonresponse in the data collection phase, the sample data set is contaminated by nonresponse
for the target variable CATCH. We generated nonresponse for CATCH in a controlled manner, under the
Missing at Random (MAR) missingness mechanism. MAR refers to ignorable type missingness, where the
nonresponse mechanism and the target variable are conditionally independent given the auxiliary variables or
covariates.

The analysis data set of # = 20 elements includes complete records for two auxiliary variables GT and POST5
for all 20 elements. Measurements for of CATCH are missing for two records. The data set includes a

missingness indicator variable with value I, = 1 for respondents and I, = 0 for nonrespondents. The sample
data set is sorted by the variable POST5 and is displayed in Table 5.1.

56



Table 5.1 Analysis data set SAMPLE10 of n = 20 vessels and two vessels with missing data for target variable
CATCH.

Obs |ID| I |CATCH| GT |POSTS5 |Sampling
/3 I, Vi X1k Xok Weight
Wi
1| 7| 1| 2642.64|218.4 1 5
2| 9| 1| 2752.96]210.6 1 5
3| 22| 1| 3538.14|229.6 1 5
4| 24| 1| 4962.48|232.0 1 5
5129 1| 7518.96266.8 1 5
6|37 0 ...|270.0 1 5
7| 1| 1| 3541.44280.0 2 5
8| 20| 1| 4158.35(305.2 2 5
9| 41| 1| 3651.90|282.0 2 5
10| 34| 1| 4363.01|312.0 3 5
1|51 0 .| 320.1 3 5
12| 56| 1| 6185.86|319.6 3 5
13| 69| 1| 8709.47|316.8 3 5
14| 78| 1| 6219.11|321.9 3 5
15| 47| 1| 8715.89|359.7 4 5
16| 71| 1| 4031.71|370.8 4 5
17| 63| 1]10270.01392.0 5 5
18| 68| 1]11693.89|399.6 5 5
19| 79| 1| 5227.51|407.0 5 5
20| 94| 1]10615.99436.8 5 5
Sum 18 100
... denotes a missing value of a variable for the record

Estimation. For adjusting for nonresponse in the sample data we apply model-assisted or reweighting methods;
post-stratification and regression estimation were chosen. The aim is that the re-weighted estimate of the
auxiliary variable POST5 or GT for the incomplete data set reproduces the known population distribution of
POSTS5 or the population total of GT. A successful adjustment for nonresponse bias requires nonzero
correlation between the auxiliary variable and the response mechanism. In addition to adjust for the
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nonresponse, improvement of efficiency of estimation for CATCH is possible if the auxiliary variable correlates
with CATCH. By the statements above, the methods introduced in Chapter 4 are promising,

We apply first the estimation strategy SRSWOR_POST, where the original sample has been drawn by SRSWOR
and the adjustment for nonresponse relies on post-stratification. As a second alternative we apply
SRSWOR_REG strategy by regression estimation with GT as the auxiliary variable. The strategy SRSWOR_HT
serves as reference strategy. We compare the results with the reference strategy by computing coefficient of
variation and design effect estimates.

The five-category variable POST5 is chosen for post-stratification. We execute the estimation of the post-
stratified estimate £pggy with the SAS procedure SURVEYMEANS. In regression estimation we use the
procedure SURVEYREG for the estimation of CATCH total by the estimator {gg¢. Results are summarized in
Table 5.2. Totals estimated by SURVEYREG and R survey functions postStratify and svyglm are equal
but standard errors differ somewhat because of slightly different variance estimators.

Table 5.2 Estimated totals, standard errors and coefficients of variation for CATCH under strategies
SRSWOR_HT, SRSWOR_POST and SRSWOR_REG computed for the complete data set of size n = 20
vessels and incomplete data set of n = 18 vessels.

Sum of
Total Std Dev Coeff of
Strategy Variable | n | Weights ; s.0() Variation
Wy ' cv(t)

a) Full sample estimates (no nonresponse)

SRSWOR_HT CATCH |20 100 610603 54439 0.089

b) Incomplete data, two missing values, no adjustment

SRSWOR_HT CATCH |18 90 543997 54466 0.100

¢) Incomplete data, adjusted by post-stratification with POST5

SRSWOR_POST | CATCH |18 90 564206 40894 0.072

d) Incomplete data, adjusted by regression estimation with GT

SRSWOR_REG |CATCH |18 90 647368 50166 0.077

Regression estimation under strategy SRSWOR_REG (part d in the table) adjusted successfully the nonresponse
bias in the HT based strategy SRSWOR_HT (part b) for the total estimate of CATCH. Post-stratification with
variable POSTS5 (part ¢) was not successful in this case. Results on cv:s in parts b) and d) in the table indicate that
the strategy SRSWOR_REG improved the efficiency of the estimation of the total of CATCH.

In this favourable situation we did know the response mechanism completely, because it was created by
ourselves. We wanted to demonstrate the power of a nonresponse adjustment technique when having access to
an auxiliary variable that correlates strongly with the target variable: corr(CATCH,GT) = 0.56 in the population.
In practice, the process that creates missingness in a sample survey is unknown. Therefore, it is important in the
preparation of the sampling frame to include various potential auxiliary variables in the frame and further, in the
data preparation phase to search for potential auxiliary data from official statistics and other reliable sources. In
both cases, the original sample data set must contain the values of the auxiliary variables that are planned to be
used in the analysis phase.

Simulation experiment. We carried out a small simulation experiment in order to verify the capacity of the
applied nonresponse adjustment method in the reduction of the bias due to nonresponse in the case considered.
We generated unit nonresponse in the population data set SIMPOP with the following scenario. A response
mechanism dependent on the auxiliary variable GT was defined such that the probability of non-response for
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variable CATCH was higher for larger values of GT than for smaller values. GT was chosen because the values
were known for all population vessels. Nonresponse within SIMPOP was generated by Poisson PPS sampling
with two expected non-respondent cases in a Poisson sample of size E(ng) = 20 elements. We then drew

K = 100 independent SRSWOR samples of size n = 20 vessels from SIMPOP, computed the estimated total,
standard error and coefficient of variation for the regression estimator £ggs of CATCH total under the
SRSWOR_REG strategy and the HT estimator £ under the SRSWOR_HT strategy from each sample. Finally,
the averages of the desired statistics over the 100 samples were computed. The results are in Table 5.2.

The average of the estimated CATCH totals computed over the 100 incomplete samples by HT estimation with
no adjustment for nonresponse (case a) is much smaller than the true value. This indicates serious negative bias
(too small value) for the HT total estimate because of the informative nonresponse i.e. the correlation between
target variable CATCH and the response mechanism. Regression estimation with GT as the auxiliary variable
(case b) shows that the method adjusted effectively the nonresponse bias: after adjustment the average of total
estimates was close to the true value. When comparing with results for the full sample (case c), it is noted that
the REG method also is efficient; coefficients of variation (7% and 6%) are close. This is due to the significant
correlation between CATCH and GT.

In the simulation experiment we had a strong auxiliary variable GT at our disposal. The piece of auxiliary data
incorporated in regression estimation was the known population total of GT. The adjustment by regression
estimation appeared to reduce substantially the nonresponse bias that was present in the unadjusted HT estimate.

Table 5.2 Means of estimated totals, standard errors and coefficients of variation for CATCH from K = 100
simulated SRSWOR samples of size n = 20 contaminated by unit nonresponse.

Averages over simulations
. n n
Strategy VarName | Replicates n Total | StdDev CcvV
SumWgt | Original | Nop. |Missing R R R

Missing t s.e(t) | cv(d)
a) Unadjusted estimates
SRSWOR_HT |CATCH 100 80.6 20 16.12 3.88 | 503622 | 41366 | 0.082553
b) Estimates adjusted for nonresponse
SRSWOR_REG | CATCH 100 80.6 20 16.12 3.88 | 633428 | 43934 | 0.069640
¢) Full sample estimates (no nonresponse)
SRSWOR_REG | CATCH 100 100 20 20 0 625882 37931 | 0.060743
True total 624036
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6 Analysis of economic variables

6.1 Estimation strategies

This chapter concentrates on the analysis of selected economic variables under several estimation strategies for
the SIMPOP population. Variables are VALUE, TOTAL_COSTS and LABOR. We discuss strategies where the
auxiliary data are incorporated in the sampling design or, alternatively, in the estimation design. The main
auxiliary variable is GT (vessel tonnage), whose values are taken from the sampling frame. Variables DAS (days
at sea) and DOMOT1 (type of fishing) are additional auxiliary variables whose population totals are assumed
available.

For VALUE, TOTAL_COSTS and LABOR, we operate with the SIMPOP population of N = 100 active
vessels. We use the entire SIMPOP of N = 120 vessels when dealing with the variable ACTIVITY. Single-
sample realizations of the strategies are considered first and are supplemented by small simulation experiments
for multiple samples.

The following estimation strategies are applied.

Table 6.1 Strategies for the analysis of economic variables.

Strategy Sampling design Estimation design

(1) | SRSWOR_HT | Simple random sampling without replacement HT estimation

PPS without replacement sampling
(2) | PPS_WOR_HT HT estimation
GT as size variable

Ratio estimation
(3) | SRSWOR_RAT | SRSWOR
GT as auxiliary variable

Regression estimation
(4) | SRSWOR_REG | SRSWOR
GT as auxiliary variable

Regression estimation

(5) | SRSWOR_REG | SRSWOR GT, DAS and DOMO1 as auxiliary

variables

The first strategy is the reference strategy. In SRSWOR, inclusion probabilities are constants. PPS_SYS with GT
as the size variable produces larger (measured in GT) inclusion probabilities for large vessels and smaller for
small vessels.

Note that essentially, the same auxiliary information is supplied for strategies (2) to (4), but in different ways. In
the PPS_WOR strategy (2), the auxiliary data are incorporated in the sampling design. A single size variable only
is allowed. GT values are required for all population vessels.

Strategies (3), (4) and (5) rely on model-assisted ratio and regression methods under simple random sampling. In
these methods, auxiliary data are incorporated in the estimation design; the sampling phase does not involve any
auxiliary information. Strategies (3) and (4) use a single auxiliary variable (GT), whereas the strategy (5) uses three
auxiliary variables: GT, DAS and DOMO1. The important option of several auxiliary variables indicates the
flexibility of model-assisted strategies. The population totals of these variables constitute the auxiliary data
needed. Table 6.2 contains the auxiliary variable totals for the model-assisted methods.
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Table 6.2 Auxiliary totals for model-assisted estimators.

GT | DAS I DOMO1

xy Ly, Lxg

32896.4 | 18308 30

6.2 Variable VALUE
6.2.1 Study setting

The variable VALUE describes the total value of landings (in Euro) during the reference period. We examine the
performance of strategies of Table 6.1 for the estimation of the population total of VALUE. Measurements for
variable VALUE are obtained from samples of different size. Sample sizes » = 5 and # = 20 vessels are used first
for the single sample cases and then for multiple samples generated by simulation experiments.

0.2.2 Efficiency comparison

Strategies of Table 6.1 are applied for SRSWOR and PPSWOR samples drawn from the SIMPOP population of
active vessels. Table 6.3 presents results for the various strategies. Our main interest in the efficiency of each
strategy, measured by coefficient of variation (cv = StdDev/Total) of an estimated total of VALUE.

Clear differences in efficiency are observed between the methods. The reference SRSWOR_HT strategy (1)
shows largest coefficient of variation (cv), for both sample sizes, as expected. Incorporation of auxiliary
information, either in the sampling design or in the estimation design, tends to improve efficiency. For samples
of sizen = 5, PPS_WOR_HT with cv = 13.5% shows best precision. For sample size n = 20, differences
between strategies (2)-(4) are minor. Of these strategies, PPSWOR_HT is not anymore the best strategy; the
model-assisted strategies (3) and (4) show better precision. In these strategies, a single auxiliary variable GT is
used. The model-assisted regression strategy (5), SRSWOR_REG under a SRSWOR sample, incorporates the
three auxiliary variable totals of Table 6.2 in the estimation procedure. This strategy attains efficiency of cv =
3.3%, which is much smaller than cv:s of the other strategies.
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Table 6.3 Estimation results for VALUE under five estimation strategies.

Sum of Total Std Dev Coeff of Var
Variable n 95% CL ~
Weights t s.e(t) cv(t)
Sample size # =5
(1) SRSWOR_HT 5| 100.000000| 255818777| 68043670| 66899263 | 444738291 0.265984
(2) PPSWOR_HT 5| 104.874286| 184743304 | 25004620 | 115319349 | 254167259 0.135348
(3) SRSWOR_RAT 5] 100.000000| 242130000| 53522592| 93528509 | 390730000 0.221050
(4) SRSWOR_REG 5] 100.000000| 211780000| 51784330| 68007133 | 355560000 0.244520
(5) SRSWOR_REG 5] 100.000000| 201460000| 39171930| 92697347 | 310210000 0.194440
Sample size # = 20
(1) SRSWOR_HT 20| 100.000000 | 201253849 | 17082556| 165499648 | 237008050 0.084881
(2) PPSWOR_HT 20| 101.573826| 223968852 | 17827256| 186655977 | 261281727 0.079597
(3) SRSWOR_RAT | 20| 100.000000| 211120000 | 14885980| 179960000 | 242280000 0.070509
(4) SRSWOR_REG | 20| 100.000000 | 210960000 15077603 | 179400000 | 242520000 0.071472
(5) SRSWOR_REG | 20| 100.000000| 195200000 6383043| 181840000| 208560000 0.032700
True total 194676172

0.2.3 Simulation experiments

Our results in this far are based on single sample realizations from SIMPOP. We next examine the behaviour of
the strategies by a small simulation experiment. Table 6.4 contains average estimation results from K = 100
simulated samples for the five strategies, computed with PROC SURVEYSELECT, SURVEYMEANS and
SURVEYREG.

Estimation results from simulation experiments in Table 6.4 show that the use of a single auxiliary variable GT
for total estimation of VALUE in strategies (2), (3) and (4) do not improve efficiency over the reference strategy
(1) that does not incorporate auxiliary information. Coefficients of variation for these methods are of similar size,
in both sample sizes. Note that VALUE and GT are not strongly correlated: cort(VALUE,GT) = 0.28 in the
population. Strategy SRSWOR_REG with three auxiliary variables GT, DAS and DOMO1 produces smallest c:s
in both sample sizes: 14% for n = 5 and 4.7% for n = 20. This model-assisted strategy cleatly outperforms the
other strategies, in both sample sizes, confirming results from the single-sample experiments. The cost efficiency
of the strategy is demonstrated by the fact that with SRSWOR_HT strategy, a sample size of 50 sample vessels
would be required to attain the 4.5% efficiency of the SRSWOR_REG strategy with 20 vessels.
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Table 6.4 Means of estimated totals, standard errors and coefficients of variation for five strategies for VALUE
from K = 100 simulated samples of size » = 5 and 7 = 20 vessels from SIMPOP of N = 100 vessels.

Averages over simulations
AuxVar Replicates
SumWgt | n Total StdDev CvV

Sample size 7 = 5

(1) SRSWOR_HT none 100 100.000000 | 5197242485 | 35762439 | 0.178504
(2) PPSWOR_HT GT 100 98.901065| 5(197469817|35691713|0.178674
(3) SRSWOR_RAT GT 100 100.000000 | 5194130000 | 34342342 | 0.174920
(4) SRSWOR_REG GT 100 100.000000 | 5195110000 | 38964736 | 0.198670
(5) SRSWOR_REG | GT, DAS, DOMO01 100 100.000000 | 5195200000 | 24544768 | 0.141860

Sample size 7 = 20

(1) SRSWOR_HT none 100 100.000000 | 20 | 196106848 | 17424625 | 0.088691
(2) PPSWOR_HT GT 100 100.168244 | 20 | 196200908 | 17288292 | 0.087867
(3) SRSWOR_RAT GT 100 100.000000 | 20 | 194270000 | 17198526 | 0.088436
(4) SRSWOR_REG GT 100 100.000000 | 20 | 196070000 | 17389926 | 0.088600

(5) SRSWOR_REG | GT, DAS, DOMO01 100 100.000000 | 20 | 196000000 | 9180696 | 0.046850

True total 194676172

Conclusions. Over all methods in this exercise, regression estimation may be the best choice. The reasons are
flexible tailoring for the purpose in the estimation phase, possibilities for improved efficiency over the other
methods by using several auxiliary variables, and minimum requirements for the auxiliary variables, because the
population totals of the variables only are needed.

Model -assisted methods ratio and regression estimation require an access to the auxiliary variable totals that are
incorporated in the estimation procedure. These totals are often obtained from reliable sources, such as official
statistics. In addition, the sample data set must contain the unit-level values of auxiliary variables. It is important
that auxiliary variables and their counterparts in the sample data set are based on exactly the same definitions.
Auxiliary variables are often readily available in the sampling frame. It is straightforward to obtain reliable
population totals and the sample values of the variables in this case.
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0.3 Variable TOTAL_COSTS

6.3.1 Study setting

The variable TOTAL_COSTS describes the total costs of fishing efforts (in Euro) during the reference period.
We examine the performance of the strategies in Table 4.1 for the estimation of the population total of
TOTAL_COSTS. Measurements for TOTAL_COSTS are obtained from samples of different size. Sample sizes
n=>5 and # = 20 are used first for the single sample cases and then for multiple samples generated by simulation
experiments.

0.3.2 Eftficiency comparison

Strategies of Table 6.1 are applied for SRSWOR and PPSWOR samples drawn from the SIMPOP population of
active vessels. Table 6.5 presents results for the vatious strategies. Our main interest in the efficiency of each
strategy, measured by coefficient of variation (cv) of an estimated total of TOTAL_COST.

Table 6.5 Estimation results for TOTAL_COSTS under five estimation strategies.

Sum of Total Std Dev Coeff of Var
Variable n 95% CL ~
Weights ¢ s.e(t) cv(t)

Sample size # =5
(1) SRSWOR_HT 5] 100.000000 | 166160856 | 37627079 | 61691336.1 | 270630375| 0.226450
(2) PPSWOR_HT 5] 90.784295| 134885883 | 19346484 | 81171432.1| 188600335| 0.143429
(3) SRSWOR_RAT | 5| 100.000000| 156790000 | 27236195 | 81167924 | 232410000 | 0.173710
(4) SRSWOR_REG | 5| 100.000000| 138920000 | 25121898 | 69165766 | 208660000 | 0.180840
(5) SRSWOR_REG | 5| 100.000000 | 130730000 | 15379475| 88031200 | 173430000 | 0.117640
Sample size # = 20
(1) SRSWOR_HT 20| 100.000000 | 126235083 | 9062905| 107266205| 145203961| 0.071794
(2) PPSWOR_HT | 20| 99.434022| 131090256 | 9737997 | 110708393 | 151472119 | 0.074285
(3) SRSWOR_RAT | 20| 100.000000 | 132750000 | 7317553 | 117440000 | 148070000 | 0.055121
(4) SRSWOR_REG | 20| 100.000000 | 132730000 | 7433539 | 117170000 | 148290000 | 0.056006
(5) SRSWOR_REG | 20| 100.000000 | 124980000 | 2575597 | 119590000 | 130370000 | 0.020608
True total 125037964

For TOTAL_COSTS, PPS sampling with GT as size vatiable and regression estimation with GT, DAS and
DOMO1 as the auxiliary variables in the assisting model for regression estimation show best efficiency for both
sample sizes. The picture clarifies with samples of size # = 20 vessels. All three model-assisted estimators
outperform the reference strategy as well as the PPS_WOR strategy. Strategy SRSWOR_REG with all three
covariates attains best precision.
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0.3.3 Simulation experiments

We examine the behaviour of the strategies by a small simulation experiment. Table 6.6 presents average
estimation results from K = 100 simulated samples for the strategies.

For samples of size # = 5 vessels, the SRSWOR_REG strategy shows best efficiency; the differences between
the other strategies are minor. The situation is the same for samples 7 = 20.

Table 6.6 Means of estimated totals, standard errors and coefficients of variation for five strategies for
TOTAL_COST from K = 100 simulated samples of size » = 5 and #» = 20 vessels from SIMPOP of N = 100
vessels.

Averages over simulations
AuxVar Replicates
SumWgt | n Total StdDev CvV

Sample size n = 5

(1) SRSWOR_HT none 100 100.000000 | 5126782133 | 18020029 | 0.139668
(2) PPSWOR_HT GT 100 98.901065| 5|126375410|17016332|0.132446
(3) SRSWOR_RAT GT 100 100.000000 | 5125230000 | 16068656 | 0.126050
(4) SRSWOR_REG GT 100 100.000000 | 5124950000 | 18149866 | 0.143670
(5) SRSWOR_REG | GT, DAS, DOMO01 100 100.000000 | 5124540000 | 8687201 |0.072160

Sample size n = 20

(1) SRSWOR_HT none 100 100.000000 | 20 | 125560582 | 8921162 0.070776
(2) PPSWOR_HT GT 100 100.168244 | 20 | 125845732 | 8372180 0.066279
(3) SRSWOR_RAT GT 100 100.000000 | 20 | 124980000 | 8331410 |0.066364
(4) SRSWOR_REG GT 100 100.000000 | 20 | 125470000 | 8380551 |0.066570

(5) SRSWOR_REG | GT, DAS, DOMO01 100 100.000000 | 20| 125390000 | 3944847 |0.031403

True total 125037964

Conclusion. The picture for TOTAL_COST seems pretty similar with the variable VALUE. This is explained
by the high correlation of the two vatiables (0.98) and by the fact that their correlations with GT and DAS are
reasonable large (Table 3.5).
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0.4 Variable LABOR
6.4.1 Study setting

The variable LABOR describes the total costs of labour force (in Euro) during the reference period. We examine
the performance of the strategies in Table 6.1 for the estimation of the population total of LABOR.
Measurements for LABOR are obtained from samples of different size. Sample sizes # = 5 and # = 20 are used
tirst for the single sample cases and then for multiple samples generated by simulation experiments.

0.4.2 Efficiency comparison

Strategies of Table 6.1 are applied for SRSWOR and PPSWOR samples drawn from the SIMPOP population of
active vessels. Table 6.7 presents results for the various strategies. Our main interest in the efficiency of each
strategy, measured by coefficient of variation (cv) of an estimated total of LABOR.

Table 6.7 Estimation results for LABOR under five estimation strategies.

Sum of Total Std Dev Coeff of Var
Variable n 95% CL ~
Weights t s.e(t) cv(t)

Sample size # =5
(1) SRSWOR_HT 5| 100.000000| 51053745| 14399614 | 11074006.5| 91033482.6 0.282048
(2) PPSWOR_HT 5| 90.784295| 46421214 | 7762403 | 24869327.4| 67973100.2 0.167217
(3) SRSWOR_RAT 5| 100.000000 | 48239631 | 11691221 | 15779598.0| 80699664.0 0.242360
(4) SRSWOR_REG 5| 100.000000| 42497390 | 11704792| 9999678.0| 74995103.0 0.275420
(5) SRSWOR_REG 5| 100.000000| 41559131 | 10142763 | 13398306.0| 69719956.0 0.244060
Sample size # = 20
(1) SRSWOR_HT 20| 100.000000| 42716843 | 3818528 | 34724572.8| 50709114.1 0.089392
(2) PPSWOR_HT 20| 99.434022| 44588485| 4444773 | 35285467.3| 53891502.1 0.099684
(3) SRSWOR_RAT 20| 100.000000 | 44761805| 3407868 | 37629055.0| 51894554.0 0.076133
(4) SRSWOR_REG 20| 100.000000 | 44716084 | 3455566| 37483501.0| 51948666.0 0.077278
(5) SRSWOR_REG 20| 100.000000 | 41207347 | 1765763 | 37511563.0| 44903132.0 0.042851
True total 40914264

For samples of size # = 5, the best strategy in efficiency is PPSWOR_HT, where the sample is drawn using PPS
without replacement sampling with GT as the size variable. The model-assisted strategies ratio and regression
estimation under SRSWOR sampling did not improve precision relative to the reference strategy SRSWOR_HT.
For samples of size # = 20, the situation changes so that the model-assisted strategies outperform the reference
strategy in efficiency, notably for regression estimation with three auxiliary variables.
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0.4.3 Simulation experiments

We examine the behaviour of the strategies by a small simulation experiment. Table 6.6 presents average
estimation results from K = 100 simulated samples for the strategies.

Table 6.8 Means of estimated totals, standard errors and coefficients of variation for five strategies for LABOR
from K = 100 simulated samples of size » = 5 and # = 20 vessels from SIMPOP of N = 100 vessels.

Averages over simulations

AuxVar Replicates
SumWgt | n| Total |StdDev CV
Sample size n =5
(1) SRSWOR_HT none 100 100.000000 | 541376736 | 8224349 | 0.196836
(2) PPSWOR_HT GT 100 98.901065 | 541529430 | 8227161|0.197577
(3) SRSWOR_RAT GT 100 100.000000 | 540635354 | 8061915 0.198120
(4) SRSWOR_REG GT 100 100.000000 | 5|41142233 | 9155431 |0.222410

(5) SRSWOR_REG | GT, DAS, DOMO01 100 100.000000 | 5{41303501 | 6904558 |0.211300

Sample size n = 20

(1) SRSWOR_HT none 100 100.000000 | 20 | 41301541 | 3917383 | 0.094881
(2) PPSWOR_HT GT 100 100.168244 |20 | 41219210 | 3926993 | 0.095134
(3) SRSWOR_RAT GT 100 100.000000 | 20 | 40787728 | 3922377 | 0.096401
(4) SRSWOR_REG GT 100 100.000000 | 20 | 41315348 | 3974518 0.096323

(5) SRSWOR_REG | GT, DAS, DOMO01 100 100.000000 | 20 | 41323075 | 2350461 | 0.057016

True total 40914264

Conclusion. For samples of size # = 5 vessels , none of the methods that incorporate auxiliary information
cither in the sampling design with PPS sampling or with model-assisted methods in the estimation design do not
improve precision over the reference strategy. For the last method with three auxiliaries in the model, the small
sample size seems to become too small for reliable estimation because the estimates may become instable. The
correlation of LABOR with GT is the weakest (0.22) among the target variables VALUE and TOTAL_COST
and this might explain at least partly the results. For samples with size # = 20 the picture changes so that
regression estimation with the three auxiliary variables GT, DAS and DOMO1 appears most efficient with an
average coefficient of variation of 5.7%, when compared with the other strategies of efficiency about 9.5%.
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6.5 Variable ACTIVITY

6.5.1 Study setting

The binary variable ACTIVITY describes whether a vessel has been active in fishing (=1) or not (=0) during the
reference period. In this exercise, ACTIVITY is taken as one of our target variables whose values have been
measured from the sample vessels in the survey. We now operate with the entire SIMPOP population of N =
120 vessels. The following estimation strategies are applied.

Table 6.9 Strategies for the estimation of the total number of active vessels.

Strategy Sampling design Estimation design

(1) | SRSWOR_HT Simple random sampling without replacement | HT estimation

SIMPOP N=120 sorted in random order

(2) | SYS_HT Systematic sampling HT estimation
SIMPOP N=120 sorted by GT

(3) | PPS_SYS_HT Systematic PPS sampling HT estimation
SIMPOP N=120 sorted in random order

GT as size variable

(4) | SRSWOR_RAT | SRSWOR Ratio estimation
SIMPOP N=120 sorted in random order GT as auxiliary variable

(5) | SRSWOR_REG | SRSWOR Regression estimation
SIMPOP N=120 sorted in random order GT as auxiliary variable

The first strategy is the reference strategy. In strategies (2) and (3), the auxiliary data are incorporated in the
sampling design. Strategies (3) and (4) rely on model-assisted ratio and regression methods under simple random
sampling. In these methods, auxiliary data are used in the estimation phase; the sampling phase does not involve
any auxiliary information.

In SRSWOR and SYS sampling, inclusion probabilities are constants. PPS_SYS with GT as the size variable
produces larger (measured in GT) inclusion probabilities for large vessels and smaller for small vessels. Sample
size n = 20 is used first for the single sample realizations and then, for multiple samples obtained by simulation.

60.5.2 Efficiency comparison

Results for ACTIVITY total from the single sample experiment are collected in Table 6.10. Strategy (1) is the
reference strategy; no auxiliary data are used. Sorting the population frame by GT followed by systematic
sampling in strategy (2) does not improve precision. Sorting is often used for good coverage over the population
in a systematic sample. The realized samples in (1) and (2) are different, but the estimates are equal. This is
because there are exactly two non-active observations in both samples. PPS_SYS_HT seems not to be a good
choice in this case: coefficient of variation for (3) is larger than for the other strategies.

Model-assisted ratio and regression estimation strategies for the SRSWOR sample in strategy (1) are well
competitive with the reference strategy. The benefit in (4) and (5) is that aggregate-level auxiliary data (population
total of GT) only are needed, whereas in (2) and (3), unit-level auxiliary data are required. Ratio estimation
SRSWOR_RAT gives best accuracy in this experiment.
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Table 6.10 Estimation results for ACTIVITY under five different estimation strategies for samples of size # = 20

elements.
Strategy p | Sumof Foual | Sedbev 95% CL Coeff of Var
Weights £ s.e(® cv(t)

(1) SRSWOR_HT 20 | 120.000| 108.00000 7.539370 | 92.2199165| 123.780083 0.069809
(2) SYS_HT 20 | 120.000| 108.00000 7.539370 | 92.2199165| 123.780083 0.069809
(3) PPS_SYS_HT 20| 122.687| 104.12294 9.714304 | 83.7906707 | 124.455216 0.093296
(4) SRSWOR_RAT 20 | 120.000| 105.16000 6.721000| 91.0914000| 119.230000| 0.063913
(5) SRSWOR_REG 20 | 120.000| 107.81000 7.696500 | 91.7039000| 123.920000| 0.071387
True total 100

0.5.3 Simulation experiments

The results above only consider the single sample realizations from SIMPOP. Let us examine closer the
behaviour of the strategies by a small simulation experiment. Table 6.11 contains average estimation results from
K =100 simulated samples for the five strategies, computed with PROC SURVEYSELECT, SURVEYMEANS
and SURVEYREG.

Ratio estimation for a SRSWOR sample is of the best in efficiency and systematic PPS sampling is the worst.
However, differences between the methods are minor. Note that essentially, the same auxiliary information was
supplied for strategies (2) to (5), but in different ways. In (2) and (3), GT values are required for all population
vessels, but in (4) and (5), population total of GT only is needed. This fundamental difference indicates the
flexibility of model-assisted strategies.

Table 6.11 Means of estimated totals, standard errors and coefficients of variation for five strategies for
ACTIVITY from K = 100 simulated samples of size # = 20 vessels from SIMPOP of N = 120 vessels.

Averages over simulations
AuxVar | Replicates
SumWgt | n Total StdDev CV
(1) SRSWOR_HT none 100 120.000000 | 20| 99.780000 | 8.851161 | 0.091158
(2) SYS_HT none 100 120.000000 | 20 | 100.680000 | 8.695351 | 0.088989
(3) PPS_SYS_HT GT 100 120.345357 20| 100.955378 | 8.954131 | 0.093647
(4) SRSWOR_RAT | GT 100 120.000000 | 20| 98.749600 | 8.556004 | 0.088489
(5) SRSWOR_REG| GT 100 120.000000 | 20 | 100.820000 | 8.830300 | 0.090218
True total 100

Conclusion. Results for ACTIVITY do not follow the same pattern than those for the other target variables of
this chapter. A reason might be a different correlation structure of ACTIVITY with the auxiliary variables (Table
6.12). It is noted that ACTIVITY correlates weakly only with all three auxiliary variables. The strongest
correlation is with GT, the auxiliary variable used in PPS sampling and model-assisted methods. This example
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thus demonstrates that it is important to invest efforts to search and test for the suitability of various auxiliary
variables for a given estimation task.

Table 6.12. Correlation of ACTIVITY with auxiliary variables LENGTH, GT and kW (all vessels, N = 120).

Pearson Correlation Coefficients

LENGTH GT kW

ACTIVITY 0.10497 | 0.09685 | 0.08820

It should be noted that we are here working with a binary target variable. This is somewhat problematic from
modeling point of view, because the assisting models in strategies (4) and (5) are based on a linear regression
model. A logistic model would be a better justified model formulation for this case, suggesting the more general
GREG (generalized regression) family estimators (see e.g. Lehtonen & Veijanen 2009). Numerically, however,
the results might not change much because the mean (0.37) of ACTIVITY is not so far from 0.5.

6.6 Conclusions

Four important target variables were analysed under a variety of typical study settings in fisheries statistics. The
aim was to examine to what extent it is possible to improve statistical efficiency of total estimates of the selected
economic variables by using auxiliary information on the vessel population in the sampling and estimation
phases. Simulation experiments were conducted to supplement the single-sample analyses.

We discussed strategies where the auxiliary data were incorporated in the sampling design or, alternatively, in the
estimation design. The main auxiliary variable was GT (vessel tonnage), whose values were taken from the
sampling frame. Variables DAS (days at sea) and DOMO1 (type of fishing) were additional auxiliary variables
whose population totals were assumed available. Strategies were SRS without replacement, systematic sampling
and PPS without replacement sampling using GT as the size variable, where Horvitz-Thompson (HT) estimation
design was used, and ratio and regression estimation design for a SRSWOR sample. In regression estimation, the
case of three auxiliary variables was demonstrated in addition to the single covariate case.

Over all strategies applied for the target variable VALUE, regression estimation may be the best choice. The
reasons are flexible tailoring for the purpose in the estimation phase, possibilities for improved efficiency over
other methods by using several auxiliary variables, and minimum requirements for the auxiliary variables, because
the population totals of the variables only are needed as auxiliary data. Auxiliary variable totals that are needed in
ratio and regression estimation are often obtained from reliable sources, such as official statistics. In addition, the
sample data set must contain the unit-level values of auxiliary variables. It is important that auxiliary variables and
their counterparts in the sample data set are based on exactly the same definitions. Auxiliary variables are often
readily available in the sampling frame, and it is straightforward to obtain reliable population totals and the
sample values of the variables in this case. If the auxiliary variables are obtained from different sources, it is
important to examine the quality of sources in order to avoid the possible bias in estimates because of
measurement errors.

The picture for TOTAL_COST seems pretty similar with the variable VALUE. This is explained by the high
correlation of the two variables (0.98) and by the fact that their correlations with GT and DAS are reasonable
large (Table 3.5).

For the target variable LABOR, with samples of size # = 5 vessels , none of the methods that incorporate
auxiliary information either in the sampling design with PPS sampling or with model-assisted methods in the
estimation design do not improve precision over the reference strategy. For the last method with three auxiliaries
in the model, the small sample size seems to become too small for reliable estimation because the estimates may
become instable. The correlation of LABOR with GT is the weakest (0.22) among the target variables VALUE
and TOTAL_COST and this might explain at least partly the results. For samples with size # = 20 the picture
changes so that regression estimation with the three auxiliary variables GT, DAS and DOMO1 appears most
efficient with an average coefficient of variation of 5.7%, when compared with the other strategies of efficiency
about 9.5%.

70



For the economic variables analysed here it seems that model-assisted methods, regression estimation with a
multivariate model in particular, might offer a reasonable choice with respect to efficiency of estimation, when
compared with the other methods.

Results for ACTIVITY do not follow the same pattern than those for the economic target variables of this
chapter. A reason might be a different correlation structure of ACTIVITY with the auxiliary variables (Table
6.12). It is noted that ACTIVITY correlates weakly only with the auxiliary variables LENGTH, GT and kW. The
strongest correlation is with GT, the auxiliary variable used in PPS sampling and model-assisted methods.
Moreovet, as a binary variable ACTIVITY might require a different model formulation than the linear model for
the model-assisted methods. This example also demonstrates that it is important to invest efforts to search and
test for the suitability of various auxiliary variables for a given estimation task.

71



7 General conclusions

The aim of the handbook was to introduce modern survey analysis methodology for the purposes of fisheries
statistics and to examine to what extent it is possible to improve statistical efficiency of total estimates by using
auxiliary information and tools of statistical modeling. Efficiency was measured by coefficient of variation of
total estimate. Coefficient of variation is defined as the ratio of standard error estimate of the total with the total
estimate itself. The measure is scale-free and suits well for comparing total estimates. Simulation experiments
were conducted to supplement the single-sample analyses.

Our conceptual framework was build on the concepts of sampling design and estimation design, defining the
estimation strategy for the survey. We discussed two types of estimation strategies. In the first type, the auxiliary
information was introduced in the sampling design by probability proportional to size (PPS) sampling or
stratified sampling, and the estimation design relied on the traditional expansion or HT estimation. Auxiliary
variables for these strategies such as PPS size variable (e.g. vessel tonnage) and stratification variables had to be
available in the frame population. This type of strategies are common in fisheries statistics. Their strengths are
long tradition in official statistics, firm theoretical basis, technical simplicity in the sampling and estimation
phases, availability of reliable software, and improved statistical efficiency over the reference strategy for
variables for which the sampling design was optimized. We demonstrated in chapters 3 and 6 the ways to use
auxiliary information in the sampling phase. Simple random sampling was used as the reference strategy. Because
methods based on sample weighting are used in the estimation phase, the approach is easily implemented in the
production work.

Weaknesses of the strategy are the possible lack of unit-level auxiliary variables in the sampling frame that are
powerful enough for efficiency improvement for the desired set of target variables in PPS or stratified sampling,
the possibility of low benefit in efficiency for some target variables, and a risk of method failure for some target
variables, e.g. under PPS sampling. In stratification, multiple stratification variables can be used, but in PPS
sampling, a restriction is that a single auxiliary variable only can be used as size variable. In this approach, the
main investment of efforts is in the sampling phase of the survey, when constructing a high quality frame
population rich enough of variables for sampling purposes.

The second type of strategies comprise methods that use the auxiliary information in the estimation phase, under
a given sampling design. This set includes several traditional design-based model-assisted estimators, which
incorporate the auxiliary data in the estimation procedure of a total. In the handbook, we focused on ratio and
regression estimation and post-stratification, both based on linear fixed-effects regression models. Requirements
for auxiliary information are different to the first type of strategies. In model-assisted methods, the population or
sub-population (domain) totals of the auxiliary variables, or population distributions of categorical auxiliary
variables, are required, and their unit-level measurements are needed in the sample data set. Typically, the
sampling design is a compromise design involving for example simple random sampling without replacement,
possibly supplemented with stratification of the population and an appropriate allocation scheme. Stratification
can be applied for example for compromise sample allocation schemes that meet precision requirements for
domains both with small and large sample sizes. This type of strategies would provide useful options in fisheries
statistics. Benefits of the approach are flexibility so that estimation designs can be tailored efficient for a set of
diverse target variables if desired, the use of multivariate assisting models with several auxiliary variables, and the
fact that aggregate auxiliary data only are needed for the model-assisted estimators. We demonstrated these
properties in chapters 4 and 6.

It is important that the auxiliary variables and their sample counterparts are based on exactly the same
definitions. This is possible if the data source is the same for both the auxiliary and sample data, for example a
statistical register. If the auxiliary variables are obtained from different sources, it is important to examine the
quality of sources in order to avoid the possible bias in estimates because of different measurement and possible
measurement errors. The tailoring approach might increase staff expertise requirements, because good
capabilities for statistical modelling are important. This might not be a problem if high-level statisticians are
available in the agency. In this approach, the main investment of efforts is in the estimation phase of the survey.
To ensure success in the estimation phase, care must be taken to have access to either high quality aggregate
auxiliary data or (even better), to have rich selection of auxiliary variables readily available in the frame
population data set, taken from statistical register and other reliable sources.
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Supplementing the tailoring approach, a compromise estimation strategy is often adopted in routine official
statistics production work. Because model-assisted estimators discussed in the handbook can be expressed as
calibration estimators, an overall strategy for production purposes can be introduced by creating multi-purpose
calibrated weights for a large set of target variables of a survey. A reasonable set of several auxiliary variables can
then be included in the calibration machinery. The calibrated weights applied to the sample values of the auxiliary
variables reproduce the known population (or domain) totals or distributions. This property of cwherence is often
appreciated in official statistics. A calibrated estimator for the total of a given target variable will be more precise
than an estimator for the reference SRS strategy, if some of the auxiliary variables in the calibration appatatus
correlate with the target variable. This property can also be used in adjusting for the possible selection bias
because of unit nonresponse, if some of the auxiliaries correlate with the target variable. This was demonstrated
in Chapter 5. Because the methodology is based on weighting (with multipurpose calibration weights) and thus
resembles the first type weighting strategies, the staff requirements also are similar. Weaknesses of this approach
might be the lack of suitable and powerful auxiliary variables for efficiency improvement for a large set of target
variables, overly complicated model formulation and over-fitting, and the possible lack of careful model
diagnostics.

The handbook also offers materials for considering sample size determination for a survey. The budget
restrictions and the adopted sampling and estimation strategies set the framework for sample size optimization.
With clever use of auxiliary information in the sampling and estimation phases, it is possible to attain the
precision requirements with a smaller sample size, when compared with a strategy that relies solely on simple
random sampling and related estimation, leading to improved cost efficiency.

Survey quality is a complex phenomenon relating to all stages of the survey process. In the context of the
European Statistical System, a number of quality criteria have been defined (see e.g.
https://ec.europa.cu/eurostat/web/quality/). The framework of total quality management provides a useful
approach for assessing the overall quality of a survey. Biemer and Lyberg (2003) define the goal of survey quality
management as finding a balance between different error components so that the total survey error is as small as
possible while considering the costs of improvements in different stages and the size of the budget. For the total
survey error framework in practice see e.g. Biemer et al. (2017).

In the handbook we have concentrated on the measurement and improvement of accuracy of the survey results,
which is one of the most important quality criteria. In this context, the quality assessment and improvement of
the sources of sample data and auxiliary data is crucial. This aspect is becoming increasingly important in the era
of diverse, sometimes of poor quality, data sources becoming available and used for official statistics.
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8 Case studies

8.1 Italy

8.1.1 Introduction

The Italian case study represents a designed application of multivariate allocation in stratified PPS sampling and
estimation for population subgroups.

The sample unit is the single vessel and this unit is selected from the Vessel Register, which also represents the
frame population.

The sampling is of a stratified nature in that the fishing vessels of the fleet are divided into homogenous groups
based on suitable variables and independent samples are taken from each of these strata (see Section 3.6).

The strata guarantee, as far as possible, that the vessels are homogeneous in terms of productive characteristics
and socio-economic structure. For this reason, the criterion for delineating the strata as homogeneously as
possible is based on the following three variables:

e  Stratification variable 1: geographical (e.g. FAO Geographical Sub Areas)
e  Stratification variable 2: technical (e.g. prevalent fishing technique)
e  Stratification variable 3: dimensional (e.g. length of vessel)

Stratification variables 1 and 3 are available in the sampling frame. Information on the prevalent fishing activity
(stratification variable 2) come from field surveys carried out periodically since the implementation of the DCF
and updated every quarter. In fact, more than 70% of the Italian fishing-vessel licences allow the use of more
than one fishing system. The existence or otherwise of actual polyvalent activity have to be verified through
analysis of information on logbooks and field interviews. This survey involves all the vessels in the fleet register,
including those less than 12 meters.

8.1.2 Multivariate allocation of sampling units

The multivariate allocation method is implemented in the MAUSS-R software developed at ISTAT as described
in https://www.istat.it/it/files /2011 /02 /user and methodological manual.pdf

The optimum sample number per stratum is defined according to Bethel’s procedure (1989), the vessels are
selected using PPS methodology (Probability Proportional to Size) by applying the algorithm of Hanurav-
Vijayan. Bethel’s procedure (1989) is a mathematical algorithm to achieve the optimum sample allocation in a
multivariate sample survey. Bethel and Hanurav-Vijayan PPS methods are reported and explained in sections 3.5
and 3.6 of the main handbook text.

A numerical example on the application of MAUSS-R for a specific target variable is reported in the following
tables:

Table 8.1 — Input file_1 for MAUSS-R

o The first column (stratum) includes the codes for the stratum, defined as explained before: DM1
(geographical subarea), DM2 (administrative region), DM3 (prevalent fishing technique, that in this case
is “dredgers — DRB”), DOM4 (vessel length classes), DOM5-DOM?7 different aggregations of
stratification variables.

o N = number of units in the frame population

M1 and M2 = average sample values for the variables “fuel costs” (M1) and “labour costs” (M2)

o S1 and S2 = standard deviation of the sampling values for the variables “fuel costs” (S1) and “labour
costs” (52)

o Cost = fieldwork costs in the stratum (cost per each interview). The variable cost of each stratum is set
equal to one because there is no difference in cost between the different strata

o Cens = 0, that is all the strata should be sampled (0 to be sampled, 1 otherwise).

Table 8.2 - Input file_2 for MAUSS-R

O
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The second file contains the constraints on sampling errors. In this specific example, we set a constraint
of 20% for both variables at the domain level DOMS5 (GSA+fishing technique+vessel lengt class) and a
constraint of 4% for both variables at the domain level DOM?7 (total segment at national level, that is
actually the segmentation required by EUMAPY).

Table 8.3 — Output file for MAUSS-R

The system produces as output the sample size per stratum as reported in Table 3. Using this tool the
user is able to make the necessary adjustments to achieve the desired sample size or, conversely, to
achieve the desired expected precision on target estimates.

The manual to use MAUSS-R tool is available at the following web page:

https://www.istat.it/en/methods-and-tools/methods-and-it-tools/design /design-tools /mauss-
r#Softwareanddocumentation-2.

! Commission Implementing Decision n. 2016/1251 adopting a multiannual Union programme for the collection,
management and use of data in the fisheries and aquaculture sectors for the period 2017-2019
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Table 8.1 — Input file_1 for MAUSS-R

STRATUM

1

30

65

66

73

74

84

85

92

93

94

95

104

110

111

112

113

123

124

DOM1

9

10

—_

7

17

17

17

17

17

17

17

17

—_

7

17

17

17

17

—_

8

—_

8

DOM2

LAZIO

CAMPANIA

ABRUZZO

ABRUZZO

E.ROMAGNA

EROMAGNA

F.V.GIULIA

F.V.GIULIA

MARCHE

MARCHE

MARCHE

MARCHE

MOLISE

VENETO

VENETO

VENETO

VENETO

PUGLIA Nord

PUGLIA Nord

DOM3

DRB

DRB

DRB

DRB

DRB

DRB

DRB

DRB

DRB

DRB

DRB

DRB

DRB

DRB

DRB

DRB

DRB

DRB

DRB

Table 8.2 - Input file_2 for MAUSS-R

DOM

DOM1

DOM2

DOM3

DOM4

DOMS5

DOMO6

DOM7

CV1

1

1

0.2

0.04

CV2

1

0.2

0.04

DOM4

VL1218

VL1218

VL1218

VL1218

VL1218

VL1218

VL1218

VL1218

VL1218

VL1218

VL1218

VL1218

VL1218

VL1218

VL1218

VL1218

VL1218

VL1218

VL1218

DOM5

9DRBVL1218

10DRBVL1218

17DRBVL1218

17DRBVL1218

17DRBVL1218

17DRBVL1218

17DRBVL1218

17DRBVL1218

17DRBVL1218

17DRBVL1218

17DRBVL1218

17DRBVL1218

17DRBVL1218

17DRBVL1218

17DRBVL1218

17DRBVL1218

17DRBVL1218

18DRBVL1218

18DRBVL1218

DOMG6

DRBVL1218

DRBVL1218

DRBVL1218

DRBVL1218

DRBVL1218

DRBVL1218

DRBVL1218

DRBVL1218

DRBVL1218

DRBVL1218

DRBVL1218

DRBVL1218

DRBVL1218

DRBVL1218

DRBVL1218

DRBVL1218

DRBVL1218

DRBVL1218

DRBVL1218

DOM?7

N

24

14

82

20

18

36

22

20

74

23

65

58

10

57

24

49

34

25

50

M1
2666
6356
2307
2307
5379
7488
7930
7190
8929
5883
8269
13270
4263
8150
6865
5857
7212
2416

7655

76

S1

2131

2279

713

713

1369

913

1039

923

1568

317

410

824

665

19

361

2940

M2

14725

12379

13587

13587

21108

54880

14512

26205

31636

21626

57668

29015

7922

28281

24594

15916

29925

18977

12348

S2

7555

6157

3907

3907

9582

5577

13494

16912

2242

13264

1022

477

126

5791

2268

8326

Cost

Cens



Table 8.3 — Output file for MAUSS-R

STRATUM

1

30

65

66

73

74

84

85

92

93

94

95

104

110

111

112

113

123

124

DOM1

9

—_

7

—_

7

17

17

—_

7

—_

7

17

17

17

17

—_

7

—_

7

—_

8

—_

8

DOM2

LAZIO

CAMPANIA

ABRUZZO

ABRUZZO

E.ROMAGNA

E.ROMAGNA

F.V.GIULIA

F.V.GIULIA

MARCHE

MARCHE

MARCHE

MARCHE

MOLISE

VENETO

VENETO

VENETO

VENETO

PUGLIA Nord

PUGLIA Nord

DOM3

DRB

DRB

DRB

DRB

DRB

DRB

DRB

DRB

DRB

DRB

DRB

DRB

DRB

DRB

DRB

DRB

DRB

DRB

DRB

DOM4 n
VL1218 10
VL1218 5
VL1218 3
VL1218 2
VL1218 2
VL1218 2
VL1218 2
VL1218 2
VL1218 8
VL1218 2
VL1218 6
VL1218 2
VL1218 3
VL1218 2
VL1218 2
VL1218 2
VL1218 2
VL1218 2
VL1218 4

63
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8.1.3 Random selection of sampling units
The sample survey is repeated every year applying a panel survey with a 20% turnover rate.

In the rotated samples the units to be observed are formed by replacing some statistical units in turn with
randomly selected others. Often a rotation of the units in the sampling strategy is introduced with the
purpose of limiting the cost of field work, reducing the amount of units to be identified before the survey.
The organization and management of interviewers and data collection support tools can also benefit from the
overlap with previous survey periods. The hypothesis behind this choice is that the maintenance of around
80% of the units in the sample from one year to another greatly facilitates the identification and location of
the units with a consequent reduction in costs and the time required to collect the data.

Stratified random selection without unit substitution is performed by using the technique of permanent
random numbers (PRN, Ohlsson 1995).

In the following text box, the R script used to randomly extract the sampling units is reported.

R script - Code for sample selection coordinated over time for longitudinal surveys
The sampling package is used

Line 4 sets the minimum number of units per stratum equal to 3 while in line 4 the rotation parameter is set
at 20%

In line 6 I read the fleet file while in line 8 it is ordered with respect to the stratum, descending by size
In line 12 the sampling rate is calculated for each stratum

Lines 13 to 18 are used to calculate the actual turnover rate in order to respect the population numbers and
the minimum required for each stratum

In row 21 the seed of generation of the random numbers (line 22) is kept fixed so that they are always
reproduced the same (PRN)

In line 22 the ratio between random numbers and inclusion probabilities proportional to the overall length is
calculated

In line 23 the archive is again sorted by stratum even with respect to this new indicator
From line 24 to line 30 the only units that correspond to the actual rotation rate are selected in the sample

Line 31 calculates a double entry table to check the actual number of units selected in each year and rotated
from one year to another

The output file is produced in line 32

1 library(sampling)

rm(list=Is(all=TRUE))

# pongo pati a 5 il numero minimo battelli x strato, e tasso rotazione
minstr <- 3

rotate <- 0.2

flotta <- read.csv2("Flotta2018_v2.csv")

colnames(flotta)[4] <- "c17"

flotta <- flottaorder(flotta§Strato,-flotta$c17),]

O oo N N U A LN

sttnum <- as.data.frame.matrix(table(flotta$Strato,flotta$c17))

colnames(strnum) <- c¢("outs","ins"

—_ =
— O

tots <- colSums(strnum)|1:2]

—_
NS}

tassoc <- tots[2]/(sum(tots))
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13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

31
32

strnum$Strato <- as.numeric(rownames(strnum))
strnum$totN <- strnum$outs + strnum$ins
strnum$ins[strnum$ins == 0] <- ceiling(strnum$totN|[strnum$ins == 0] * tassoc)
strnum$outs <- strnum$totN - strnum$ins
strnum$totn <- pmin(pmax(strnum§ins,minstr),strnum$totN)
strnum$rot <- pmin(ceiling(strnum$totn * rotate),strnum$totN-strnum$totn)
strnum$totlft <- tapply(flotta§ LFT flotta§Strato, FUN=sum)
flotta2 <- merge(flotta,strnum[,c(3,5:7)],by = "Strato")
set.seed(160964)
flotta2$p <- runif(nrow(flotta2))/ (flotta2$LF T/ flotta2$totlft)
flotta2 <- flotta2|order(flotta2§Strato,-flotta2§c17 flotta2$p),]
flotta2$count <- 1
for (1in 2:nrow(flotta2))
{
ifelse(flotta2§Stratol[i] - flotta2§Strato[i-1] == 0,flotta2$count[i] <- flotta2$count[i-1] + 1,1)
}
flotta2$c18 <- 0

flotta2§c18|(flotta2$count > flotta2§rot) & (flotta2$count <= flotta2§totn + flotta2$rot)] <-

table(flotta2$c17,flotta2$c18)

write.csv2(flotta2[,c(1:3,10)], file="campione18.csv", quote=F)
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8.1.4 Estimation of the totals of interest by Horvitz-Thompson estimators
and Sen-Yates-Grundy variance estimators

To obtain an estimate of totals per stratum, the Horvitz-Thompson estimator is used, while the Sen-Yates-
Grundy formula is used to estimate the relative sampling error. Detailed explanations of these methods are
reported in Chapter 3 of the Handbook.

In this section, an application of the estimation procedure is presented. In the Italian survey, the size variable
is the Length Overall (LFT) of the vessel. In the following table, the calculation of HT estimators for a single
stratum is presented. The raising factor is calculated as: LFT/(Ift*n).

ID_vessel Stratum_code 1ft_vessel n_sample size LFT_tot stratum N_population Raising factor
4345 1072 26.9 6 371.06 15 2.299009

5148 1072 26.55 6 371.06 15 2.329316

7075 1072 30.16 6 371.06 15 2.050508

18561 1072 23.92 6 371.06 15 2.585424

27472 1072 28.4 6 371.06 15 2.177582
17247 1072 26.12 6 371.06 15 2.367662

In the following text box the R script used to produce the final estimates according to the HT estimators in
the PPS survey is reported.

R script - Estimation of the totals

library(survey)

#setwd("~/Documents/Nisea")

setwd("C:/Users/...")

# reading csv files

datic <- read.table("sample values.csv" headet=TRUE,sep=";",dec=",")
vinco <- read.table("constraints.csv" headetr=TRUE sep=";",dec=",")
popol <- read.table("population.csv" headetr=TRUE,sep=";",dec=",")
# create strvin with the indication of strata on the constraints

strvin <- merge(vinco,strati2,by="Strato",all = TRUE)

# definition of the sample design

disegno <- svydesign(ids = ~ 1,strata = ~Strato,data = datic,pps="brewer" fpc=~pinc)
# estimations

stitot0 <-
svytotal(~FuelCost+Labour+Maint+Commerc+OtherFix+OtherVar+OtherRev+Invest+Subs+Depr+Deb
ts+FuelCons+Crew,disegno,deff=TRUE)

stistr( <-
svyby(~FuelCost+Labour+Maint+Commerc+OtherFix+OtherVar+OtherRev+Invest+Subs+Depr+Debts
+FuelCons+Crew,~Strato,disegno,svytotal)

—n —na

write.table(stistr0,file="stistr0.csv",sep=";",dec=",")
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In the following text box the R script used to produce the Sen-Yates-Grundy variance estimators is reported.

R script - Sen-Yates-Grundy variance estimators
#tempdir="C:/Users/....."

library(data.table)
campionari=fread(paste(tempdir,'campionati.csv',sep="/") )
pr_i=fread(paste(tempdir,'pr_i.csv',sep="/") )
pt_ij=fread(paste(tempdit,'pr_ij.csv',sep="/") )
strati=fread(paste(tempdir,'strati.csv',sep="/") )
setkey(campionari, batcod)

setkey(pr_i, batcod)

# check if there are batcod in samples not present in pr_i, in case the procedure returns a data.table with the
indications of the errors

if (' sum(campionarif,unique(batcod)] %in% pr_i[,batcod]) != nrow(campionari[, N,by=batcod]) ) {

cv=data.table( batcod_in_campionari_not_in_pr_i=setdiff(campionari[,unique(batcod)], pr_i[,batcod]) )

} else {

strati_cod_variable_unique = pr_i[ campionaril,.(batcod, cod_variable)], .(batcod,cod_variable,strato)]
[,.-N keyby=.(strato,cod_variable)|[,[N:=NULL]

pr_i_temp=pr_i[list(batcod.x=batcod,pr_i.x=pr_i)]
setkey(pr_i_temp, batcod.x)
setkey(pr_ij, batcod.x)

pr_ij = pr_i_temp|pr_ij]

pr_i_temp=pz_i[ list(batcod.y=batcod,pr_i.y=pr_1i)]
setkey(pr_i_temp, batcod.y)
setkey(pr_ij, batcod.y)

pr_ij = pr_i_temp|pr_ij]

setkey(pr_ij, strato)

setkey(strati_cod_variable_unique, strato)

pr_ij = strati_cod_variable_unique[pr_ij,allow.cartesian=TRUE, nomatch=0)]

camp_temp=campionarillist(batcod.x=batcod, cod_variable, values.x=values)]

setkey(camp_temp, batcod.x, cod_variable)
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setkey(pr_ij, batcod.x, cod_variable)

pr_ij = camp_temp|pr_ij]

camp_temp=campionarillist(batcod.y=batcod, cod_variable, values.y=values)]
setkey(camp_temp, batcod.y, cod_variable)

setkey(pr_ij, batcod.y, cod_variable)

pr_ij = camp_temp|pr_ij]

pr_ij[is.na(values.x), values.x:=0)]

pr_ij[is.na(values.y), values.y:=0]

campionari = pr_i|campionati, .(batcod,cod_variable,values,strato,pr_i)|
setkey(campionari, strato,cod_variable)

tot=campionaril,list( tot_values=sum(values/pr_i)), by=.(strato,cod_vatiable) |
setkey(pr_ij, strato,cod_variable)

var=pr_ij[list( var_values= sum( (pr_ix * pr_iy / pr_xy - 1) * (values.x/pr_ix - values.y/pr_i.y)"2)),
by=.(strato,cod_variable)]

cv_strato=var|tot|[var_values>=0]

cv_strato[, cv:=ifelse(tot_values==0,0,sqrt(var_values)/tot_values)]

# this part is executed only if there are var <0. In this case, the cv calculation is performed with ccs:

if (nrow(vat[var_values<0])!=0) {

str_cod_variable_per_ccs=var[var_values<0,.(strato, cod_variable)]

setkey(str_cod_variable_per_ccs, strato)
setkey(pr_i,strato )

pr_i=pr_i[str_cod_variable_per_ccs]
camp_temp=campionarillist(batcod,cod_variable,values)]
setkey(camp_temp, batcod,cod_variable)

setkey(pr_i, batcod,cod_variable)

pr_i=camp_temp[pr_i]

pr_i[is.na(values), values:=0)]

cv_strato_ccs=pr_i[,list(tm=mean(values), s2=var(values)), keyby=.(strato,cod_variable)]
setkey(strati, strato)

Cv_strato_ccs=strati[cv_strato_ccs]
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cv_strato_ccs=cv_strato_ccs|,.(strato,cod_variable, tot_values= m * N, var_values=(N"2 * (1-n/N)/n) *

2)]
cv_strato_ces[,cv:=ifelse(tot_values==0, 0, sqrt(var_values)/(tot_values) ) ]
cv_strato_ccs = cv_strato_ccs|,.(strato,cod_variable,cv)]
setkey(cv_strato_ccs, strato,cod_variable)
cv_strato_ccs=tot[cv_strato_ccs,.(strato,cod_variable,tot_values,cv)]
cv_strato_ccs = cv_strato_ccs|, var_values:=(cv*tot_values)”2][,names(cv_strato), with=F]

cv_strato=rbindlist( list(cv_strato, cv_strato_ccs) )

cv_totale=cv_strato[,.(strato=0,tot_values=sum(tot_values), var_values=sum( (tot_values*cv)"2)
),by="cod_variable']

cv_totale[tot_values>0,cv:=sqrt(var_values)/tot_values]

cv_totale[is.na(cv), cv:=0]

cv=rbindlist( list(cv_strato[,.(cod_variable, strato, tot=tot_values ,cv)], cv_totale[,.(cod_variable, strato,
tot=tot_values ,cv)] ) )

cv],(c(tot','ev")):=list(round(tot,2),round(cv,5))]

setorder(cv, strato,cod_variable)

}

filename=paste(tempdit,"cv_pps.csv",sep="/")

— nn — m

write.table(x = cv, file = filename,quote = F,sep = ";",na = "",row.names = IF)

Key references
Key references to the multivariate allocation method:

o Buglielli, T., De Vitiis, C. and Barcaroli, G. (2013) MAUSS-R - Multivariate Allocation of Units in
Sampling Surveys. User and Methodological Manual (version 1.1). ISTAT, Italy.

o Bethel J. (1989) Sample Allocation in Multivariate Surveys. Survey Methodology 15, 47-57.

o Chromy J. (1987) Design Optimization with Multiple Objectives. Proceedings of the Survey
Research Methods Section, American Statistical Association, pp.194-199.

Key references to the Code for sample selection coordinated over time for longitudinal surveys

o Ohlsson E. (1995). Coordination of samples using permanent random numbers, In Cox BG, Binder
DA, Nanjamma Chinnappa B, Christianson A, Colledge MJ, Kott PS (Eds.), Business Survey
Methods, 153-169. New York: Wiley.

Key reference to the PPS sampling method (Hanurav-Vijayan):

o Chaudhuri, A. and Vos, J.W.E. (1988) Unified Theory and Strategies for Survey Sampling.
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8.2 Finland

Application of statistical methods in data collection: Regression estimation in Finnish data collection.

8.2.1 Introduction

Here we present the application of regression (and ratio) estimation in the Finnish trawler segment for
estimating the cost and earnings variables. The trawler fleet consist of 53 vessels in 2017 are divided into
three fleet segments. We present here the estimation for the TM1824 segment that consists of 13 vessels.

8.2.2 Data collection and sources

Economic data collection is based on hierarchical multi-stage survey that combines information from
different data sources. Main sources are the central control register on commercial fishery (includes fishery
catch data, fishing vessel register, first hand sales of quota species), and financial statement statistics, statistics
on business subsidies and employment statistics from Statistic Finland (SF). An additional account surveys
for trawlers conducted by Natural Resources Institute Finland (Luke).

Information on catches by species, value of landings by species, effort data and vessel capacity information is
collected by vessel. This data is collected exhaustively for all vessels. Economic data is collected by fishing
unit: company or fisherman (including family members). Financial statements data for fishing firms with
income over a threshold level of around € 11 000 are obtained from the database of Statistics Finland (SF) on
structural business and financial statement statistics.

Financial data gives a reliable estimate for profitability of the larger vessels, but the disaggregation of cost
items does not follow that in regulation. Therefore data on the cost and earnings structure is collected with
an additional account survey on trawlers every 3 year.

Luke compares landings statistics against the turnover data from Statistics Finland and from account survey.
Ratio between turnover and value of landings per company is calculated to spot abnormalities. Due to the
under-coverage in the structural business and financial statement statistics (compared to target population)
the segment totals need to be estimated with regression estimation and additional cost structure analysis.
Coefficients of variation and coverage rates are calculated for each variable and for each vessel segment.
Regression output results are analyzed to check they are statistically valid.

8.2.3 Estimation procedures

Cost and earnings estimates for trawler segments are done by design-based and model assisted regression and
ratio estimation using SAS.

1) First, the turnover and total income per segment are estimated with regression using PROC
SURVEYREG of SAS and using the total value of catch as explanatory (auxiliary) variable. The actual
syntax used in Finland is quite complex, so for demonstration purposes, more simple code is presented
as follows:

titlel 'Turnover from catchvalue';

proc surveyreg data=Tablel total=Totals;
strata segment /list;
model turnover = catch value;
weight Weight;

estimate "Turnover in all classes under Model III"
catch value 1 catch value sum 1

/e;
ods output ParameterEstimates = MyParmEst turnover;
run;
proc print data=MyParmEst turnover;
run;
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titlel 'Total income from catchvalue';
proc surveyreg data=Tablel total=Totals;
strata segment /list;
model total income = catch value;
weight Weight;

estimate "Total income in all classes under Model III"

catch value 1 catch value sum 1
/e;
ods output ParameterEstimates = MyParmEst totinc;

run;
proc print data=MyParmEst totinc;

run;

Next, the total costs are estimated for total population per segments from the turnover as follows:

titlel 'Total costs from turnover';
proc surveyreg data=Table2 total=Totals2;

strata segment /list;
model total costs = turnover;
weight Weight;
estimate "Total costs in all classes under Model III"
turnover 1 turnover sum 1
/e;
ods output ParameterEstimates = MyParmEst totcost;

run;
proc print data=MyParmEst totcost;

run;

As third step, the average percentage share for each cost item from total costs in each vessels segment is
calculated. For example, the percentage share for fuel costs is calculated with the following formula:
Fuelcost_%=(sum of fuel costs in a vessel segment)/(sum of total costs in a vessel segment).
Finally, the cost variables are estimated as ratio estimates from the estimated total costs by multiplying
the percentage share of each cost item with the total costs for each vessel segment as follows:
Fuel _costs =Fuelcost_%*Total_Cost

8.2.4 Results

The results from the estimation of turnover for TM1824 are presented in Table 8.1. The Coefficient of
variation for the segment turnover is 123328/4364399=0,028. Similar results for each regression (Turnover,

Total income, Total costs) and each vessels segment are generated by SAS.
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Table 8.1. SAS output of regression estimation of turnover for TM1824.

Total estimate for

turnover

Estimate

Estimate Standard Error

Ivaihto Iunkas sa 4 under Model I 4364355

123328 | 412

DF | t Value | Pr= |t|

35.39 <0001

The estimated regression coefficients are presented in Table 8.2. The regression function used in the
estimation of turnover for TM1824 is also given.

Table 8.2. SAS output of estimated regression coefficients for Turnover.

Turnover=—24]ﬁ3.446+ 0.

898*value of catch.

A

Standard
Parameter stimat Error
luckkat p1 5£26.2 1094.5903
luokkab p2 2D931.954  4045.3862
luokkab t1 = 4p638.838| 23257.2236
luokkab t2 ™S 13676.6077
luokkab t3 = 59219.478) 17413.6183
Arvo 1 1.285 0.1108
Arvo_2 0.542 0.0862
Arvo 3 0,810 0.0665
Arvo_4 @ 0.0377
Arvo_5 0.888 0.0166

EJstimated Ré-gression Coefficients

t Value
1.39
5.7
1.96
-1.81
3.40
11.60

6.29
12.18
23.80
53.56

Pr = |t
0.1640
=.0001
0.0504
0.0707
0.0007
<.0001
=.0001
=.0001
<0001
=.0001

Note: The degrees of freedom for the t tests is 412
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Appendices

Appendix A: SAS implementation of worked examples
A.1 SAS SURVEY procedures

We introduce briefly the basic SAS SURVEY procedures for sample selection from populations and the
analysis of the drawn sample, and then we present the SAS codes (with selected results) that were used in the
“Worked example” sections in Chapters 3 to 5 of the main text. The SAS version 9.4 was used in the
examples. Up-to-date information on survey sampling and analysis features can be found at
http://support.sas.com/rnd/app/stat/procedures/SurvevAnalysis.html. The SAS 9.4 procedures employed
for the examples are the following,.

PROC SURVEYSELECT: Sample selection from the sampling frame data set with a variety of equal and
unequal probability sampling methods involving stratification (STRATA statement) and clustering (CLUSTER
statement). In stratified sampling, proportional allocation, Neyman allocation and optimal allocation can be
used. An element weight variable SAMPLINGWEIGHT is included in the output data set. Joint selection
probabilities can be computed for some sampling designs. The replicated sampling option allows
independent sampling from the frame by different sampling designs and output the samples to a SAS data
set. The following basic sample selection techniques (see also Table 3.1) are included:
Equal probability sampling techniques:

— Simple random sampling without replacement and with replacement

—  Systematic sampling

— Bernoulli sampling

— Balanced bootstrap sampling

Unequal probability sampling techniques:

—  PPS sampling without replacement using the Hanurav-Vijayan algorithm or with the Brewer, Murthy
or Sampford methods

—  PPS sampling with replacement
—  PPS systematic sampling
—  Sequential PPS sampling with minimum replacement by the Chromy method
— Poisson PPS sampling
Up-to-date information on capabilities of PROC SURVEYSELECT can be obtained at:

https://documentation.sas.com/?docsetld=statug&docsetTarget=statug surveyselect syntax0l.htm&docset
Version=15.1&locale=en

PROC SURVEYMEANS: Horvitz-Thompson (expansion) estimation of totals, means, medians and other
descriptive statistics for populations and pre-defined subpopulations or strata (BY statement) and domains
(DOMAIN statement). Estimation of ratios and post-stratification are also included. Variances for the estimated
statistics can be estimated by the linearization or sample re-use methods (balanced repeated replications and
the jackknife method). In domain estimation, the extra variation because of random domain sample sizes is
accounted for by the extended domain variables technique (Lehtonen & Veijanen 2009 p. 223). The sampling
design can be complex involving stratification, clustering, and unequal weighting. The following statistics,
their standard errors, confidence intervals and coefficients of variation can be computed:

— Means and totals
— Proportions

—  Quantiles

—  Geometric means

— Ratios of two totals or means
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Up-to-date information on capabilities of PROC SURVEYMEANS can be obtained at:
https://documentation.sas.com/?docsetld=statug&docsetTarget=statug surveymeans toc.htm&docsetVersi
on=15.1&locale=en

PROC SURVEYREG: Design-based linear regression analysis, ANOVA and ANCOVA under stratified
one-stage and multi-stage sampling designs with equal and unequal probability sampling. The estimation of
totals and means by ratio and regression estimation, post-stratification and calibration methods can be
performed for the entire survey population and pre-defined sub-populations or strata (BY statement) and
domains (DOMAIN statement). The aggregate-level auxiliary information is incorporated in regression
estimation by specifying suitable linear functions (ESTIMATE statement). The sampling design can be complex
involving stratification, clustering, and unequal weighting.

Up-to-date information on capabilities of PROC SURVEYREG can be obtained at:
https://documentation.sas.com/?docsetld=statug&docsetTarget=statug_survevreg toc.htm&docsetVersion
=15.1&locale=en

PROC SURVEYIMPUTE can be used for imputation for item missingness (not used here):
https://documentation.sas.com/?docsetld=statug&docsetVersion=15.1&docsetTarget=statug surveyimput
e_overview.htm&locale=en
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A.2 Section 3.3.4: Simple random sampling example

Selection of a SRSWOR sample with PROC SURVEYSELECT

* CODE BOX 3.1: SRSWOR sampling from SIMPOP with PROC SURVEYSELECT;
/* Simple random sampling without replacement (SRSWOR) is requested by the SAS
option method=srs.

Option seed given by the user specifies the initial seed for random number
generation in SRSWOR. Here the initial seed is kept constant over the examples (to
be able to reproduce the samples and estimates). The requested sample size is n=5.
Sampling weights (inverses of inclusion probabilities) are included automatically in
the sample data set.

The drawn SAMPLE1 of n=5 elements in Table 3.7.%*/

proc surveyselect data=pop out=samplel
sampsize=5 seed=98765 method=srs stats;
run;

/* NOTE: SAS programming language is not case sensitive (uppercase and lowercase
code is treated as equivalent)*/

Estimation of population total under SRSWOR_HT strategy with PROC SURVEYMEANS

* CODE BOX 3.2: Estimation of total of CATCH for SAMPLE1 by PROC SURVEYMEANS ;
proc surveymeans data=samplel

sumwgt nobs sum std cvsum clsum total=100;

var CATCH;

weight SamplingWeight;

run;

/* Estimation results are in Table 3.8

Options for output control:

sumwgt: sum of weights

nobs: sample size

sum: total estimate

std: standard error for total

cvsum: coefficient of variation for total
clsum: 95% confidence limits for total;*/
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A.3 Section 4.3.4: Domain estimation example

* CODE BOX 3.3: Domain estimation of totals of CATCH for domains DOM@1=0 and DOM@1l=1
of SAMPLE2 of n=20 elements by PROC SURVEYMEANS;

* SCENARIO 1: Estimation under the conditional approach assuming known domain sizes
N=70 for DOM@1=0 and N=30 for DOM@1l=1 in population;

data domain®;
set sample2;
where DOMO1=0;
run;

proc surveymeans data=domain® nobs sumwgt sum cvsum clsum total=70;
var CATCH;

weight SamplingWeight;

run;

* Computation for DOM@1=1 similarly for data set domainl of n=8 elements and setting
the option total=30;

* Qutput for DOMO1=0 (Table 3.11 first row);

The SURVEYMEANS Procedure

Data Summary

Number of Observations 12
Sum of Weights 60
Statistics
Sum of
Variable Label N Weights Sum Std Dev 95% CL for Sum
FEEFFFFFFFFFFFFFFFFFFFFFFFFFFFF A FF S F S F A S F S S A FFFFFFFFFFFF PP FFFFFFFFFSF
CATCH CATCH 12 60.000000 419536 48298 313232.887 525838.924

FTEFFE S FE S PSP LS RS FFF SRS FFS S RIS FF LSRR PSR FF LS FFSSFF LS PSSP PSS FFSFFSFFSF

Statistics

Coeff of

Variation

Variable for Sum
FFFFFEFFFFFFFFFFSFFFFF
CATCH 0.115122
FFFFFEFFFFFFFFFFSFFFFF
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* CODE BOX 3.4: Domain estimation of totals of CATCH for domains DOM@1=0 and DOM@1l=1
of SAMPLE2 of n=20 elements by PROC SURVEYMEANS;

* SCENARIO 2: Estimation under the conditional approach assuming unknown domain
sizes in population and by using data set domain® of n=12 from Code Box 3.3 (NOTE:
No total= option in SURVEYMEANS call);

proc surveymeans data=domain® nobs sumwgt sum cvsum clsum;
var CATCH;
weight SamplingWeight; run;

* Computation for DOMO1l=1 similarly for data set domainl of n=8 elements

* Qutput for DOMO1=0 (Table 3.11 3rd row);
The SURVEYMEANS Procedure

Data Summary

Number of Observations 12
Sum of Weights 60
Statistics
Sum of
Variable Label N Weights Sum Std Dev 95% CL for Sum
ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
CATCH CATCH 60.000000 419536 53060 302752.639 536319.172

ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
Statistics

Coeff of

Variation

Variable for Sum
FFFFFEFFFFFFFFFSFFFFFF
CATCH 0.126472
FFFFFEFFFFFFFFFSFFFFFF
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* CODE BOX 3.5: Domain estimation of totals of CATCH for domains DOM@1=0 and DOM@1=1
of SAMPLE2 of n=20 elements by PROC SURVEYMEANS;

* SCENARIO 3: Estimation under the unconditional approach using extended domain
variables for data set sample2 of n=20 (NOTE: Analysis over the entire sample data
set);

proc surveymeans data=sample2 nobs sumwgt sum cvsum clsum total=100;
var CATCH;

domain DOM@1;

weight SamplingWeight; run;

* Qutput (Table 3.11 last 2 rows);

The SURVEYMEANS Procedure

Data Summary

Number of Observations 20
Sum of Weights 100
Statistics
Sum of
Variable Label N Weights Sum Std Dev 95% CL for Sum
FFFFFSFFFFFFFFSFFFFFFFF A FFFFSFFFFF S FFFFF IS FFFF S FFF IS FFFFF S FFFFSFFFFFFFFSS
CATCH CATCH 20 100.000000 610603 54439 496661.885 724544 .886

TS FFFES S FF RS S FFFES S S FFFF PSS FFF LSS FFF PSS FFFFLSSSFFFFESSSSFFFESSSSFFFFFSSSSFFFFSF

Domain Analysis: DOMAIN

Sum of
DOMAIN Variable Label N Weights Sum Std Dev
fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
CATCH CATCH 60.000000 419536 84344
1 CATCH CATCH 8 40.000000 191067 50990

FTEFFE S FE S PSS FF S FF LS RS FF S FFSSF PSS SFFS SRS S PSS FF PSSP SF ISP FFFSFFSSFFEFF

Domain Analysis: DOMAIN

Coeff of

Variation

DOMAIN Variable 95% CL for Sum for Sum
fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
CATCH 243002.412 596069.399 0.201041

1 CATCH 84343.946 297791.014 0.266870

FEFFF PP S F PSSR PSP A F PSSR SFF LS PSSP PSP FFFSFFFSF

94




A.4 Section 3.5.4: PPS sampling example

Selection of a PPSWOR sample with PROC SURVEYSELECT

* CODE BOX 3.6: PPSWOR sampling from SIMPOP with PROC SURVEYSELECT;

/* PPS sampling without replacement (PPSWOR) is requested by the SAS option
method=pps. The requested sample size is n=5.

The size variable is given by the size statement.

The drawn SAMPLE3 of n=5 elements in Table 3.13.%*/
proc surveyselect data=simpop out=sample3 sampsize=5 seed=98765 method=pps stats;

size GT;
run;

Estimation of population total under PPSWOR_HT strategy with PROC SURVEYMEANS

* CODE BOX 3.7: Estimation with SAMPLE3 under PPSWOR sampling;

proc surveymeans data=sample3 sumwgt nobs sum std cvsum clsum total=100;
var CATCH;

weight SamplingWeight;

run;

* Estimation results are in Table 3.14;

/* NOTE: The only difference in SURVEYMEANS code for estimation under PPSWOR and
SRSWOR sampling is in the contents of the SAMPLINGWEIGHT variable.*/
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A.5 Section 3.6.4: Stratified sampling example

*CODE BOX 3.8. SAS code for stratified sampling and HT estimation;

* Sampling: Sort SIMPOP by STR3 and save it as population data set POPS;
proc sort data=pop out=pops;

by STR3; run;

*(a) STR_SRSWOR sampling, n=20;
proc surveyselect data=pops out=sample5(keep=id str3 catch samplesize
selectionprob samplingweight)
sampsize=20 seed=98765 method=srs stats;
strata STR3 / alloc=proportional; * definition of strata and allocation;
run;

(b) STR_PPSWOR sampling, n=20;

proc surveyselect data=pops out=sample6(keep=id str3 catch samplesize
selectionprob samplingweight)
sampsize=20 seed=98765 method=pps stats;

strata STR3 / alloc=proportional;

size GT_DAS; run;

* Estimation;

* Input strata sizes Np,h =123 in population into data set STRATA;
data STRATA;

input STR3 _TOTAL_;

datalines;

133

2 33

3 34

5

run;

(a) STR_SRSWOR_HT with SAMPLES;

proc surveymeans data=SAMPLE5 sumwgt nobs sum std cvsum clsum total=STRATA;
var CATCH;

strata STR3;

weight SamplingWeight; run;

(b) * STR_PPSWOR_HT with SAMPLE6;
* Replace SAMPLE5 by SAMPLE6 in (a);

* The samples are in Table 3.17 and estimation results are in Table 3.19;
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A.6 Section 4.2.3: Ratio and regression estimation examples

* CODE BOX 4.1 Ratio estimation with SAMPLE7 of n=5 by PROC SURVEYMEANS;

* For ratio estimation for CATCH total with GT as auxiliary variable we first
estimate by equation (19) the ratio r=CATCH/GT between HT estimated totals of CATCH
and GT. We then compute the variance estimate for the ratio estimated total t(RAT)
by using the variance estimate v(r) of the estimated ratio r and the square of known
GT total in population;

* The SRSWOR sample SAMPLE7 of n=5 elements is shown in Table 4.2;
* Estimation results (computed below) are in Table 4.6;

proc surveymeans data=SAMPLE7 ratio total=100;
ratio CATCH/GT;

weight SamplingWeight;

run;

The SURVEYMEANS Procedure
Data Summary

Number of Observations 5
Sum of Weights 100

Ratio Analysis

Numerator Denominator Ratio Std Err
FFHEFFFFSFFFSFFFSFFFFFFFFFFFFFFFFFFFFFSFFFFFFFFSFFF
CATCH GT 20.105147 2.831090

TS FFFESE S F PP FF PSS FFFFFSSSFFFFFFSEFFFF

* Variance and standard error estimation of ratio estimated total of CATCH;
data a;

t_x=32896.4; * known population total of GT;

se_r=2.831090; * s.e of ratio r;

var_r=se_r**2; * variance of ratio r;

var_t_rat=t_x**2*var_r; variance of ratio estimated CATCH total;
se=sqrt(var_t_rat); * standard error of ratio estimated total;

run;

proc print data=a; run;

* Computed standard error estimate;
Obs t_x se_r var_r var_t_rat se

1 32896.4 2.83109 8.01507 8673694049.2 93132.67
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* CODE BOX 4.2 Ratio estimation with SAMPLE7 of n=5 by PROC SURVEYREG;

* Ratio estimation for CATCH total with GT as auxiliary variable is executed as a
special case of regression estimation by fitting a linear model without an intercept
term (option noint) and using the estimate statement to supply the GT total;

* Estimation results are in Table 4.7;

proc surveyreg data=SAMPLE7 total=100;
model CATCH=GT / solution noint;

weight SamplingWeight;

estimate "CATCH total" GT 32896.4 / E; run;

* Qutput;

The SURVEYREG Procedure
Regression Analysis for Dependent Variable CATCH

Data Summary

Number of Observations 5
Sum of Weights 100.00000
Weighted Mean of CATCH 7225.4
Weighted Sum of CATCH 722538.8

Fit Statistics
R-square 0.9297

Estimated Regression Coefficients

Standard
Parameter Estimate Error t Value Pr > |t]
GT 20.6761657 2.72832884 7.58 0.0016
Estimate
Coefficients
Effect Rowl
GT 32896
Estimate
Standard
Label Estimate Error DF t Value Pr > |t
Catch total 680171 89752 4 7.58 0.0016
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CODE BOX 4.3 Regression estimation with SAMPLE7 of n=5 by PROC SURVEYREG;

* Regression estimation for CATCH total with GT as auxiliary variable is executed by
fitting a linear regression model (24) for SAMPLE7 and using the estimate statement
to supply the INTERCEPT total (=population size) and the GT total;

* Estimation results are in Table 4.8;

proc surveyreg data=SAMPLE7 total=100;

model CATCH=GT / solution;

weight SamplingWeight;

estimate "CATCH total"™ INTERCEPT 100 GT 32896.4 / CL E;
run;

* Qutput;
The SURVEYREG Procedure

Regression Analysis for Dependent Variable CATCH

Data Summary

Number of Observations 5
Sum of Weights 100.00000
Weighted Mean of CATCH 7225.4
Weighted Sum of CATCH 722538.8

Fit Statistics

R-square 0.6701
Estimated Regression Coefficients
Standard
Parameter Estimate Error t Value Pr > |t]
Intercept -6238.6791 2363.59006 -2.64 0.0576
GT 37.4647 8.53363 4.39 0.0118
Estimate
Coefficients
Effect Rowl
Intercept 100
GT 32896
Estimate
Standard
Label Estimate Error DF t Value Pr > |t Alpha Lower Upper
CATCH total 608586 78985 4 7.71 0.0015 0.05 389288 827884
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A.7 Section 4.3.3: Post-stratification example

* CODE BOX 4.4 Post-stratification with SAMPLE9 of n=20 by PROC SURVEYMEANS;

* The post-stratification variable POST2 is formed from variable DOM@1 by changing
the class codes (if DOM@1=0 then POST2=1, if DOM@1l=1 then P0OST2=2);

* Post-stratification is based on equation (29) and is executed with PROC
SURVEYMEANS by using the POSTSTRATA statement;

* Estimation results are in Table 4.14;

* Defining the distribution of POST2 in population;
data FREQ;

input POST2 _PSTOTAL_;

datalines;

1 70

2 30

; run;

proc surveymeans data=SAMPLE9 nobs sum cvsum sumwgt clsum total=100;
var CATCH;

poststrata POST2 / pstotal=FREQ outpswgt=PSWGT;

weight SamplingWeight;run;

* Qutput;

The SURVEYMEANS Procedure

Data Summary

Number of Poststrata 2

Number of Observations 20

Sum of Weights 100

Statistics
Sum of

Variable Label N Weights Sum Std Dev 95% CL for Sum
FFHEFFF S FFFFFFF A A FF A A FF S FFFFFFF A FF S A FF A FF A A FFFFFF A FF S FFFF A FF A FFFFFFFFFFFFFFFFFFFFFFFSS
CATCH CATCH 20 100.000000 632759 55889 515782.798 749735.535

TS FFFESS S FF PSSR PRSP FFESSSSFFF PSS FFFSSSSSFFFFLSSSFFFFFSSSFFFFF LSS FFFFSSFSFFFSF

Coeff of

Variation

Variable for Sum
FFFFFFFFFFFFFFFSFFFFFF
CATCH 0.088325

FIfFFFFFSFFFFFFFFFFFS
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A.8 Section 5.5: Nonresponse adjustment example

* CODE BOX 5.1 Adjustment for non-response with SAMPLES of n=20 by post-
stratification and regression estimation;

* Estimation results are in Table 5.2;

* 1) Post-stratification with PROC SURVEYMEANS;
* Post-stratification variable POST5 is formed from variable GT by dividing its
values into 5 equally-sized classes;

data FREQ;

input POST5 _PSTOTAL_ ;
datalines;

1 20

2 20
3 21
4 19
5 20

)
run;

proc surveymeans data=SAMPLE9 sum total=100;
var CATCH;

poststrata POST5 / pstotal=FREQ outpswgt=PSWGT;
weight SamplingWeight;

run;

* 2) Regression estimation by PROC SURVEYREG;

* The original continuous variable GT is used as the auxiliary variable in the
linear regression model in regression estimation of CATCH total with the ESTIMATE
statement;

proc surveyreg data=SAMPLE9 total=100;

model CATCH=GT / solution ;

weight SamplingWeight;

estimate "CATCH total™ INTERCEPT 100 GT 32896.4 / cl e;
run;
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Appendix B: R-implementation of worked examples

Most of the analyses in the “Worked example” -sections of Chapters 3-5 in the main text were also
implemented in the R environment (R Core Team 2018, version 3.4.4). The main workhorses were R
packages sampling (Tillé and Matei 2016) and survey (Lumley 2019). Their use is described briefly in the
beginning of this Appendix. Those descriptions are followed by vignettes of the worked examples. The code
of the vignettes is available online at www.zzz.zzz.

The explanation of the code in the vignettes is very brief, and gets briefer towards the end. The main
objective of the comments is to point out the corresponding parts of the main text, where the examples are
discussed in more detail. Sometimes same operations are coded differently in different examples in order to
illustrate different ways of doing things in R, that might be most convenient in different situations. Some
code used to print the results was not included in the vignettes, but everything is available in the online R
codes.

B1 sampling: R functions for sample selection

Package sampling is arguably the most extensive collection of R functions for implementing various
sampling designs. It also contains functions for estimation and calibration, but survey package was chosen
for those tasks because of its easier use.

Simple random sampling is obtained with R base function sample, but all other sampling designs are easier
to implement with tailored sampling functions. In the examples below, we used functions UPsystematic,
UPtille, and strata from sampling package to implement systematic, PPS, and stratified designs,
respectively.

The first two functions, UPsystematic and UPtille, require only one argument, vector pik whose
length is equal to the population size N and elements equal to the desired inclusion probabilities. For equal
probability sampling, set pik=rep(n/N, N), where n is the sample size. They return a binary vector of
length N with value 1 indicating inclusion in the sample and 0 exclusion.

Use of function strata is a bit more complicated. It takes as its first argument a data frame data
containing one row corresponding to each of the N elements in the sampling frame, and as second argument
stratanames name(s) of the categorical variable(s) in data that are used for stratification. Formally, they
can be numeric, character, or factors, but they should naturally contain several replications of each value.
data must be sorted in ascending order by the columns given in the stratanames argument before
applying the function. The third required argument of strata, size, is a vector that gives the stratum
sample sizes in the order, in which the strata are given in data. The available sampling designs within strata,
optional argument method, are “srswor” (the default), “srswr”, “poisson”, and “systematic”.
The last two allow for unequal probability sampling within strata, in which case one further argument is
required: pik , the inclusion probabilities or, more conveniently, a vector of values such that the inclusion
probabilities are proportional to them within strata. Typically this would be one (auxiliary variable) column of
data.

Differently from the other sample selection functions in package sampling, strata returns the indices
(rather than indicators) of the frame elements chosen to the sample (column ID_unit in the output data
frame, the values corresponding to row numbers in input data frame data). The output data frame also
contains other information, most significantly the computed inclusion probabilities for the sampled elements
(column Prob).

For all sample selection functions in package sampling, but especially for strata, getdataisa
recommendable convenience function for extracting the measurements of the sampled units from the
population data.
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B2 survey: R functions for design-based estimation

Package survey offers a unified approach for implementing a wide collection of different estimation
strategies to complex survey samples. The analysis always starts by specifying the sampling design through
function svydesign. Its most important arguments are

ids: identification of clusters; for element sampling designs, give 1ds=~1; this is a required argument

probs: inclusion probabilities for unequal probability sampling; not necessary for equal probability sampling;
argument weights is an alternative

strata: specification of stratifying variable(s) in data, if any

fpc: finite population cotrection; most convenient to specify by giving a vector of population (stratum) sizes;
see the examples

data: data frame to look up variables in the othet arguments (the sample)

The estimator of the design variance is also essentially specified in the call of svydesign (arguments pps
and variance). The default is to use the with-replacement approximation (formula 13 in the main text) for
PPS sampling.

In simpler strategies, where auxiliary information is not utilized in the estimation phase, the next step is to
call one of the estimation functions in package survey. In the examples, we use exclusively function
svytotal to estimate the population total, but a whole bunch of other functions is available for other needs
(see vignette(’ survey’), for examples). Typically these functions only need the specification of the
design (obtained with svydesign, or its extensions discussed below) and target vatiable(s).

Finally, the estimate, its standard error, confidence interval, and coefficient of variation can be extracted from
the object returned by svytotal or its relatives using functions print, coef, SE, confint, and cv as
illustrated in the examples.

Domain estimation is obtained with function svyby taking svytotal or a relative as one of its arguments.
This is illustrated in the end of the simple random sampling example.

Model-assisted estimates are obtained with two further steps after the call of svydesign. First, either
svyratio (ratio estimation) or SVyglm (regression estimation) is called to fit the model, and then their
predict method returns the population estimates.

Function calibrate, also illustrated in the ratio and regression estimation examples, produces an extended
design object by reweighting and adding information to an object returned by svydesign. After that,
functions like svytotal can be called with the design specified by calibrate in the same way as with the
design returned by svydesign. Function postStratify works in a similar manner (see the post-
stratification example).

B3 Section 3.3.4: Simple random sampling example

B3.1 Preliminaries

We use the population of active vessels in SIMPOP. R code in preliminaries.r includes reading
SIMPOP data from the Excel file.

source('preliminaries.r")
library(survey)

pop <- subset(SIMPOP, ACTIVITY == 1)
N <- nrow(pop)
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B3.2 Sample selection

SRSWOR samples can be selected with base R function sample. Given a vector of unique frame element
id’s and desired sample size as the first two arguments, sample returns the vector of n id’s included in the
sample.

n <-5
sl <- subset(pop, ID %in% sample(pop$ID, n), select=c(ID, CATCH))

Obs ID CATCH
20 4158.350
33 3871.413
50 7179.005
69 8709.466
5 77 6314.279

AP WNR

We demonstrate estimation using the sample of 5 vessels listed in Table 3.7. rather than the sample drawn
above.

n <-5
SAMPLE1 <- subset(pop, ID %in% c(1,44,49,55,93))
SAMPLE1$SamplingWeight <- N/n

Obs ID CATCH SamplingWeight
1 1 3541.440 20
2 44 4421.918 20
3 49 11355.973 20
4 55 6865.416 20
5 93 9942.192 20
Sum 36126.939 100

B3.3 Estimation

To obtain HT estimator for CATCH total, we first specify the sampling design using function svydesign
and then compute the estimator and its standard error using function svytotal, both from package
survey.

des <- svydesign(
ids=~1,
fpc=rep(N, n),
data=SAMPLE1)

res <- svytotal(~CATCH, des)

total SE
CATCH 722539 147823

Package survey also contains a specific method for generic R function confint to compute an
appropriate confidence interval from the svystat object returned by svytotal, as well as, function €V to
compute the coefficient of variation (c.f. Table 3.8).

confint(res,df=degf(des))

2.5% 97.5%
CATCH 312117.2 1132960

cv(res)

CATCH
CATCH ©.2045879

20 vessels included in the larger SAMPLE2 of Section 3.3.5 are listed in Table 4.12. Results of Table 3.9 are
thus replicated as follows.
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n <- 20
SAMPLE2.0bs.ID <- data.frame(
Obs=1:n,
ID=c(1, 9, 29, 41, 47, 56, 63, 68, 69, 71,78, 94, 7, 20, 22, 24, 34, 37, 51
> 79)
)
SAMPLE2 <- merge(SAMPLE2.0bs.ID, pop)
SAMPLE2$SamplingWeight <- N/n
des <- svydesign(
ids=~1,
fpc=rep(N, n),
data=SAMPLE2)
res <- svytotal(~CATCH, des)

The following numbers are obtained from res with extractor functions coef (the estimate), SE (standard
error), confint, and cv

Total s.e. lower 95% CL upper 95% CL cv
610603 54439 496661.9 724544 .9 0.089156

B3.4 Estimation for domains
SAMPLE2 is also used to demonstrate domain estimation.

Nd <- as.numeric(table(pop$DOMO1)) # population size of domains
nd <- as.numeric(table(SAMPLE2$DOMO1)) # sample size of domains

print(data.frame(
Domain = sort((unique(pop$DOMO1))),
Sample = nd,

Population = Nd
), row.names=FALSE)

Domain Sample Population
0 12 70
1 8 30

The unconditional analysis (Table 3.11, Scenario 3) is obtained with survey function svyby:

res_ucond <- svyby(~CATCH,~DOM@1,des,svytotal,vartype=c('se', 'ci',"'cv"))
print(res_ucond, row.names=FALSE)
DOMO1 CATCH se ci 1l ciu cv

@ 419535.9 84343.75 254225.20 584846.6 0.2010406
1 191067.5 50990.11 91128.69 291006.3 0.2668697

Confidence intervals produced directly by svyby are based on the normal distribution. In order to obtain
confidence intervals based on the t-distribution (which is more appropriate for small samples), we need a
separate call to confint:

res_ucond[,c('ci 1',"'ci u")] <- confint(res_ucond, df=degf(des))

Scenario 2. Unconditional approach

Domain Total s.e. lower 95% CL upper 95% CL cv
0 419536 84344 243002.41 596069.4 0.201041
1 191067 50990 84343.95 297791.0 0.266870

105



B4 Section 3.4.4: Systematic sampling example

B4.1 Preliminaries
We use the population of active vessels in SIMPOP and sort it by GT

source('read_population.r")

library(sampling)

library(survey)

pop <- subset(SIMPOP, ACTIVITY == 1)

N <- nrow(pop)

pop <- pop[order(pop$GT),c("'ID"', 'CATCH", 'GT"),]

pop$newID <- 1:N # indicating the position in the ordered population

First ten vessels in the sorted population

ID CATCH GT newID
9 2752.963 210. 1
7 2642.640 218.

13 3453.840 221.

22 3538.136 229.

24 4962.480 232.

11 5458.752 234.

10 5529.550 244.
4 5055.050 252.

31 6538.224 255.
6 6481.075 257.

ANUPROCOOPA PO
QuUOVWooNOUVThAWN

=

B4.2 Sample selection

Function UPsystematic in package sampling can also do unequal probability systematic sampling with a
vector of inclusion probabilities given as the first argument. Equal probability systematic sampling is, of
course, obtained by giving equal inclusion probabilities. UPsystematic returns a vector of sample inclusion
indicators 1 (included in the sample) or 0 (excluded).

n <- 20

s <- subset(pop,
UPsystematic(rep(n/N,N))==1,
select=c('newID', "CATCH', 'GT"))

First six vessels in the systematic sample

newID CATCH GT
5 4962.480 232.0

10 6481.075 257.4

15 5115.130 269.7

20 8402.750 275.5

25 3541.440 280.0

30 2776.712 286.2

B4.3 Estimation

HT estimator for CATCH total from equal probability systematic sample is calculated exactly as for
SRSWOR (Section 3.3.5). The standard error estimate is approximate as discussed in Sections 3.4.3 - 3.4.5 of
the main text.

des <- svydesign(
ids=~1,
fpc=rep(N, n),
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data=s)
svytotal (~CATCH, des)

total SE
CATCH 647994 35765

Demonstration of more appropriate estimators of standard error for systematic sampling is beyond the scope
of these guidelines.

B5 Section 3.5.4 PPS sampling example

B5.1 Preliminaries
We use the population of active vessels in SIMPOP.

source('preliminaries.r")
library(sampling)

library(survey)

pop <- subset(SIMPOP, ACTIVITY == 1)
N <- nrow(pop)

B5.2 Sample selection

Although base R function sample allows argument prob (“a vector of probability weights for obtaining the
elements of the vector being sampled”), it does #oz in general produce a PPS sample with inclusion
probabilities equal to these probability weights. Package sampling contains several functions for proper
PPS sampling, UPtille among others.

Function UPtille takes as its first argument a vector of desired inclusion probabilities - here we make them
proportional to size variable GT - and returns a vector of sample inclusion indicators 1 (included in the
sample) or 0 (excluded).

n <-5

pop$pik <- inclusionprobabilities(pop$GT,n)
s3 <- pop[UPtille(pop$pik)==1, ]
s3$SamplingWeight <- 1/s3%$pik

Obs ID CATCH GT pik SamplingWeight
1 13 3453.84 221.4 0.0336510986004548 29.71671
2 18 3052.56 322 0.0489415255164699 20.43255
3 32 5565.7728 345.1 0.0524525479991731 19.06485
4 55 6865.416 408 0.0620128646295643 16.12569
5 71 4031.7084 370.8 0.0563587505015746 17.74347
Sum 103.08327

We demonstrate estimation using the sample of 5 vessels listed in Table 3.13. rather than the sample drawn
above.

n <-5

SAMPLE3.0bs.ID <- data.frame(
Obs=1:n,
ID=c(65, 89, 27, 53, 94)

)

SAMPLE3 <- merge(SAMPLE3.0bs.ID, pop)
SAMPLE3$SamplingWeight <- 1/SAMPLE3$pik
SAMPLE3 <- SAMPLE3[order(SAMPLE3$0bs), ]

Obs ID CATCH GT SamplingWeight
1 65 3799.95 329 19.99781
2 89 6845.8104 343.2 19.17040
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3 27 6087.564 345.1 19.06485

4 53 7601.8734 376.2 17.48878
5 94 10615.9872 436.8 15.06245
Sum 90.78430

B5.3 Estimation

To obtain HT estimator for CATCH total, we first specify the sampling design using function svydesign
and then compute the estimator and its quality indicators using function svytotal and extractor functions
coef (the estimated total), SE (standard error), confint (confidence intervals), and cVv (coefficient of
variation); cf. Table 3.14 in the main text. All these functions (or their methods for svystat objects
produced by svytotal) ate from package survey.

des <- svydesign(
ids=~1,
fpc=rep(N, n),
weights=~SamplingWeight,
data=SAMPLE3

)
res <- svytotal(~CATCH, des)

Total s.e. lower 95% CL upper 95% CL cv
616136 67055 429961.9 802310.9 0.108831

B6 Section 3.6.4 Stratified sampling example

B6.1 Preliminaries

We use the population of active vessels in SIMPOP and divide it to three nearly equal-sized strata (new
variable STR3) according to the values of variable GT. For stratified sampling function strata in package
sampling, the population must be sorted in ascending order by the stratifying variable. Within strata, we
order by ID.

source('preliminaries.r")

library(sampling)

library(survey)

pop <- subset(SIMPOP, ACTIVITY == 1)

N <- nrow(pop)

pop$STR3 <- as.numeric(cut_number (pop$GT, 3, right=FALSE)) # the Llast argumen
t was needed to make the same division as in the main text

pop <- pop[order(pop$STR3, pop$ID), ]

( Ns <- table(pop$STR3) ) # population sizes of strata

1 2 3
33 33 34

B6.2 Sample selection

The requited arguments to sampling function strata are the data frame containing the population, name
of the stratifying variable in that data frame, and a vector of sample sizes with length equal to the number of

unique values of the stratifying variable and with order corresponding to the order of the strata in the sorted

population (see above). "srswor" is the default method, but it was included in the call to avoid unnecessaty
messages in the printed output.

strata adds the inclusion probabilities as variable Prob and function getdata offers a safe way to
combine the actual data to the frame element indicators returned by strata.
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s5 <- getdata(pop, sampling::strata(pop, "STR3", c(6, 7, 7), method="srswor",

description=TRUE
Stratum 1

Population total and number of selected units:

Stratum 2

Population total and number of selected units:

Stratum 3

Population total and number of selected units:

Number of strata

Total number of selected units 20

s5$SamplingWeigh

We obtain a different sample from that in Table 3.17(a), but the numbers of sampled vessels by strata are the

)

3

t <- 1/s5%Prob

33

33

same, as well as, the resulting sampling weights.

6

7

34 7

Obs 1ID STR3 GT CATCH Prob SamplingWeight
1 11 1 234 5458.752 0.181818181818182 5.500000
2 17 1 286.2 2776.7124 ©.181818181818182 5.500000
3 33 1 263.9 3871.413 0.181818181818182 5.500000
4 41 1 282 3651.9 0.181818181818182 5.500000
5 42 1 291.4 8811.936 0.181818181818182 5.500000
6 54 1 277.2 3009.8376 0.181818181818182 5.500000
7 5 2 312 4687.176 0.212121212121212 4.714286
8 16 2 310.5 4160.079 0.212121212121212 4.714286
9 20 2 305.2 4158.35 ©.212121212121212 4.714286

10 27 2 345.1 6087.564 0.212121212121212 4.714286
11 51 2 320.1 6638.874 0.212121212121212 4.714286
12 69 2 316.8 8709.4656 0.212121212121212 4.714286
13 100 2 336 3958.752 0.212121212121212 4.714286
14 60 3 378 8551.872 0.205882352941176 4.857143
15 67 3 399 7160.055 0.205882352941176 4.857143
16 70 3 417.6  8218.368 0.205882352941176 4.857143
17 73 3 377.4 8405.4528 0.205882352941176 4.857143
18 77 3 377.4 6314.2794 0.205882352941176 4.857143
19 88 3 418 8025.6 0.205882352941176 4.857143
20 94 3 436.8 10615.9872 0.205882352941176 4.857143
Sum 100.000000

Function strata can also produce a stratified PPSWOR sample (as in Table 3.17(b)). However, for fixed
stratum sample sizes, only the systematic sampling option is available. Other alternatives would be the
balanced sampling method implemented as function samplecube in package sampling or separate PPS
samples (Section 3.5) for each stratum.

s6 <- getdata(pop, sampling::strata(pop, "STR3", c(6, 7, 7), method="systemat

ic", pik=pop$GT_DAS))
s6$SamplingWeight <- 1/s6$Prob

Obs ID STR3  GT_DAS CATCH Prob SamplingWeight
1 6 1 59459.4 6481.0746 0.220962529577015 4.525654
2 13 1 44280 3453.84 0.164552969079241 6.077071
324 1 43152  4962.48 0.160361104826274 6.235926
4 35 1 53508 6046.404 ©0.198845986212557 5.029018
5 42 1 69936 8811.936 0.259895583683961 3.847699
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6 62 1 48720  5797.68 0.181052860287729 5.523249
7 2 2 64310  6559.62 0.242821312113227 4.118255
8 18 2 38640  3052.56 0.145896680143914 6.854166
9 30 2 64365.5 7208.936 0.243030868680204 4.114704
10 48 2 48470.4 6107.2704 0.183014245477421 5.464056
11 56 2 78302 6185.858 0.295652221755402 3.382352
12 69 2 75081.6 8709.4656 0.283492654759143 3.527428
13 80 2 61420 6879.04 0.23190926745443 4.312031
14 55 3 86904 6865.416 0.236646798794281 4.225707
15 63 3 83496 10270.008 0.227366532174898 4.398185
16 73 3 65667.6 8405.4528 0.178818320497369 5.592268
17 82 3 76612.2 9959.586 0.208621373913597 4.793373
18 88 3 83600 8025.6 0.227649732799433 4.392713
19 93 3 103564.5 9942.192 0.282014721919938 3.545914
20 99 3 62560 4879.68 0.170356067989623 5.870058
Sum 95.829826

Rather than using the samples drawn above, estimation from stratified samples is demonstrated using the
samples listed in the main text (Table 3.17). While strata computed the inclusion probabilities for us, in
this case we need to do it by hand.

n <- 20
SAMPLE5.0bs.ID <- data.frame(
Obs=1:n,
ID=c(1, 22, 23, 25, 42, 44, 12, 15, 30, 36, 46, 52, 75, 55, 57, 67, 82, 90,
91, 94)
)

SAMPLE5 <- merge(SAMPLE5.0bs.ID, pop)

w <- data.frame(STR3=1:3, Prob=c(6, 7, 7)/c(33, 33, 34))
w$SamplingWeight <- 1/w$Prob

SAMPLE5 <- merge(SAMPLE5, w)

SAMPLES <- SAMPLES5[order(SAMPLE5$0bs), ]

Obs ID STR3 CATCH Prob SamplingWeight
1 1 1 3541.44 0.181818181818182 5.500000
2 22 1 3538.136 ©.181818181818182 5.500000
3 23 1 8402.75 0.181818181818182 5.500000
4 25 1 4978.662 0.181818181818182 5.500000
5 42 1 8811.936 0.181818181818182 5.500000
6 44 1 4421.9175 ©.181818181818182 5.500000
7 12 2 8644.482 0.212121212121212 4.,714286
8 15 2 3786.0615 0.212121212121212 4.714286
9 30 2 7208.936 0.212121212121212 4.714286

10 36 2 5855.208 0.212121212121212 4.714286
11 46 2 8100.048 0.212121212121212 4.714286
12 52 2 4888.3428 0.212121212121212 4.714286
13 75 2 9652.4416 0.212121212121212 4.714286
14 55 3 6865.416 0.205882352941176 4.857143
15 57 3 6364.0962 0.205882352941176 4.857143
16 67 3 7160.055 0.205882352941176 4,857143
17 82 3  9959.586 0.205882352941176 4.857143
18 90 3 8803.08 0.205882352941176 4.857143
19 91 3 7823.1153 0.205882352941176 4.,857143
20 94 3 10615.9872 0.205882352941176 4.857143

Sum 100.000000

110



n <- 20
SAMPLE6.0bs.ID <- data.frame(
Obs=1:n,
ID=c(44, 41, 35, 11, 38, 37, 20, 48, 80, 12, 69, 56, 50, 58, 79, 43, 61, 57
, 91, 81)
)
SAMPLE6 <- merge(SAMPLE6.0bs.ID, pop)
# Compute inclusion probabilities proportional to GT_DAS by strata
# with stratum sample sizes 6, 7, 7
str_stats <- aggregate(GT_DAS~STR3, pop, sum)
str_stats <- within(str_stats,{
n<-c(6, 7, 7);
f <- n/GT_DAS # Here GT_DAS 1is the stratum sum, and inclusion probabiliti
es for population/sample elements thus obtained as f * GT_DAS
})
SAMPLE6 <- merge(SAMPLE6, subset(str stats, select=c(STR3, f)))
SAMPLE6 <- within(SAMPLES6, {
Prob <- f*GT_DAS;
SamplingWeight <- 1/Prob

})
SAMPLE6 <- SAMPLE6[order(SAMPLE6$0bs), ]
Obs ID STR3 CATCH  GT_DAS Prob SamplingWeight
1 44 1 4421.9175 46546.5 0.172975717598168 5.781158
2 41 1 3651.9 52170 ©.193873721699729 5.157997
3 35 1 6046.404 53508 0.198845986212557 5.029018
4 11 1 5458.752 56862 0.21131009322005 4.732382
5 38 1 6288.66 64170 0.238468022263209 4.193434
6 37 1 6682.5 67500 0.250842940669575 3.986558
7 20 2 4158.35 38150 0.144046541084118 6.942201
8 48 2 6107.2704 48470.4 0.183014245477421 5.464056
9 80 2 6879.04 61420 0.23190926745443 4.312031
10 12 2 8644.482 68607 0.259045898929438 3.860320
11 69 2 8709.4656 75081.6 0.283492654759143 3.527428
12 56 2 6185.858 78302 0.295652221755402 3.382352
13 50 2 7179.0048 83476.8 0.315191200544448 3.172677
14 58 3 4519.008 57936 0.157764532529521 6.338560
15 79 3 5227.508 68783 0.187301813051954 5.338977
16 43 3 6359.2191 71451.9 0.194569449079088 5.139553
17 61 3 7173.6 85400 0.232551282070234 4.300127
18 57 3 6364.0962 87179.4 0.237396735832714 4.212358
19 91 3 7823.1153 101598.9 0.276662230116223 3.614516
20 81 3 13391.04 103008 0.280499326270382 3.565071
Sum 92.050773

B6.3 Estimation

Estimation using package survey proceeds in similar manner as in the earlier examples. We only need to
provide the strata argument to svydesign and provide stratum-specific fpc (population size).

# first add to each sample element the population size of its stratum
# from table Ns created in the Prelimaries section
SAMPLE5 <- merge(SAMPLES,
data.frame(STR3=names(Ns), N=as.numeric(Ns)))
# then use those to determine appropriate fpc
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des <- svydesign(

ids = ~1,
strata = ~STR3,
fpc = ~N,
data = SAMPLES

)
res <- svytotal(~CATCH, des)

Table 3.19(a) STR_SRSWOR

Total s.e. lower 95% CL upper 95% CL cv
691976 41692 604014.1 779937 0.06025

SAMPLE6 <- merge(SAMPLE®G,
data.frame(STR3=names(Ns), N=as.numeric(Ns)))
des <- svydesign(

ids = ~1,
strata = ~STR3,
fpc = ~N,

weights=~SamplingWeight,
data = SAMPLE6

)
res <- svytotal(~CATCH, des)

Table 3.19(b) STR_PPSWOR

Total s.e. lower 95% CL upper 95% CL cv
576254 22282 529243 623265.3 0.038667

B7 Section 4.2.3: Ratio and regression estimation examples

B7.1 Sample selection

We use SRSWOR samples SAMPLE1 and SAMPLE2 (Section 3.3.5), renamed SAMPLE7 and SAMPLES to
emphasize the assumption that we now have access to auxiliary variables GT, DAS, and DOMO1. We also
assume that the population totals of the auxiliary variables are known.

SAMPLE7 <- subset(pop,ID %in% c(1,44,49,55,93))
n7 <- nrow(SAMPLE7)

SAMPLE7$SamplingWeight <- N/n7

GTtot <- sum(pop$GT)

DAStot <- sum(pop$DAS)

DOM@1ltot <- sum(pop$DOMO1)

Obs ID CATCH GT DAS DOM@1 SamplingWeight

1 1 3541.44 280 136 0 20
2 44 4421.9175 282.1 165 1 20
3 49 11355.9732 386.1 228 0 20
4 55 6865.416 408 213 0 20
593 9942.192 440.7 235 1 20

Sum 100

SAMPLE8 <- subset(pop,
ID %in% c( 1, 9, 29, 41, 47, 56, 63, 68, 69, 71,
78, 94, 7, 20, 22, 24, 34, 37, 51, 79)
)
n8 <- nrow(SAMPLES8)
SAMPLE8$SamplingWeight <- N/n8
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B7.2 Ratio estimation

C.f. Table 4.6; for more information, see the help file of survey function calibrate.

des7 <- svydesign(
ids=~1,
fpc=rep(N, n7),
data=SAMPLE7)
( est.ratio <- svyratio(~CATCH, ~GT, des7) )

Ratio estimator: svyratio.survey.design2(~CATCH, ~GT, des7)
Ratios=

GT
CATCH 20.10515
SEs=

GT

CATCH 2.83109
predict(est.ratio, total=GTtot)

$total
GT
CATCH 661387

$se
GT
CATCH 93132.68

Using calibration:

des7.calib <- calibrate(des7, ~GT-1, pop=GTtot, variance=1)
svytotal (~CATCH, des7.calib)

total SE
CATCH 661387 93133

B7.3 Regression estimation

SAMPLE7 with one auxiliary variable GT. For more information, see the help file of survey function
svyglm.

( reg.model <- svyglm(CATCH~GT, des7) )
Independent Sampling design

svydesign(ids = ~1, fpc = rep(N, n7), data = SAMPLE7)
Call: svyglm(formula = CATCH ~ GT, design = des7)
Coefficients:
(Intercept) GT

-6238.68 37.46

Degrees of Freedom: 4 Total (i.e. Null); 3 Residual

Null Deviance: 4.6e+07

Residual Deviance: 15170000 AIC: 94.82

predict(reg.model, newdata=data.frame(GT=GTtot), total=N)
link SE

1 608586 68403
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SAMPLES with auxiliary variables GT, DAS, and DOMO1.

des8 <- svydesign(
ids=~1,
fpc=rep(N, n8),
data=SAMPLES)
( reg.model <- svyglm(CATCH~GT+DAS+DOM@1, des8) )

Independent Sampling design
svydesign(ids = ~1, fpc = rep(N, n8), data = SAMPLES)

Call: svyglm(formula = CATCH ~ GT + DAS + DOM@1, design = des8)

Coefficients:
(Intercept) GT DAS DOMO1
-6329.23 20.55 33.35 -545.37

Degrees of Freedom: 19 Total (i.e. Null); 16 Residual
Null Deviance: 140800000
Residual Deviance: 29150000 AIC: 350.6

predict(reg.model,
newdata=data.frame(GT=GTtot, DAS=DAStot, DOM@1=DOM@ltot),
total=N)

link SE
1 637401 28485

The estimates are equal to those obtained with SAS SURVEYREG (Tables 4.8 and 4.10), but s.c.’s somewhat
different.

B8 Section 4.3.3: Post-stratification example

B8.1 Sample selection

We use SRSWOR sample SAMPLE2 (Section 3.3.5), renamed SAMPLEY to emphasize the assumption that
we now have access to binary auxiliary variable DOMO1. We also assume that its population frequencies
(domain sizes) are known.

SAMPLE9 <- subset(pop,

ID %in% c( 1, 9, 29, 41, 47, 56, 63, 68, 69, 71,

78, 94, 7, 20, 22, 24, 34, 37, 51, 79)

)
n9 <- nrow(SAMPLE9)
SAMPLE9$SamplingWeight <- N/n9
Nps <- table(pop$DOMO1)
Npop <- data.frame(DOM@l=names(Nps), Freg=as.numeric(Nps))

B8.2 Estimation
C.f. Table 4.14.

des9 <- svydesign(

ids=~1,

fpc=rep(N, n9),

data=SAMPLE9)
des.ps <- postStratify(des9, ~DOMO1l, Npop)
svytotal (~CATCH, des.ps)
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total SE
CATCH 632759 55889

B9 Section 5.5. Example on treating nonresponse

B9.1 Sample selection

We use SRSWOR sample SAMPLE2 (Section 3.3.5), renamed SAMPLE10 to emphasize the assumption that
we now have access to continuous auxiliary variable GT and categorical variable POST5 obtained by dividing
the population to five equally-sized post-strata according to the values of GT. We also assume that the
population total of GT and population sizes of the post-strata are known. Furthermore, measurements of the
target variable CATCH are missing for two records.

pop$POST5 <- as.numeric(cut_number(pop$GT, 5))
( GTtot <- sum(pop$GT) )

[1] 32896.4

Nps <- table(pop$POST5)
( Npop <- data.frame(POST5=names(Nps), Freg=as.numeric(Nps)) )

POSTS Freq
1 1 20
2 2 20
3 3 21
4 4 19
5 5 20

SAMPLE10 <- subset(pop,
ID %in% c( 1, 9, 29, 41, 47, 56, 63, 68, 69, 71,
78, 94, 7, 20, 22, 24, 34, 37, 51, 79)
)

n1@ <- nrow(SAMPLE10)

SAMPLE10@$SamplingWeight <- N/nl@
SAMPLE1@$CATCH[SAMPLE10$ID %in% c(37, 51)] <- NA
SAMPLE10$I <- as.numeric(!is.na(SAMPLE1@$CATCH))

SAMPLE1@ <- SAMPLE1@[order (SAMPLE1@$POST5, SAMPLE10$1ID), ]

Obs ID I CATCH GT POST5 SamplingWeight

1 7 1 2642.64 218.4 1 5
2 9 1 2752.9632 210.6 1 5
322 1 3538.136 229.6 1 5
4 24 1 4962.48 232 1 5
529 1 7518.9576 266.8 1 5
6 37 © <NA> 270 1 5
7 1 1 3541.44 280 2 5
8 20 1 4158.35 305.2 2 5
941 1 3651.9 282 2 5
106 34 1 4363.008 312 3 5
11 51 © <NA> 320.1 3 5
12 56 1 6185.858 319.6 3 5
13 69 1 8709.4656 316.8 3 5
14 78 1 6219.108 321.9 3 5
15 47 1 8715.8907 359.7 4 5
16 71 1 4031.7084 370.8 4 5
17 63 1 10270.008 392 5 5
18 68 1 11693.8944 399.6 5 5
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19 79 1 5227.508 407 5 5
20 94 1 10615.9872 436.8 5 5
sum 18 100

B9.2 Estimation

No adjustment for non-response (Table 5.2 b)

des10 <- svydesign(
ids=~1,
fpc=rep(N, ni10),
data=SAMPLE10)
svytotal (~CATCH, des10, na.rm=TRUE)

total SE
CATCH 543997 65830

Post-stratification (Table 5.2 ¢)

des.ps <- postStratify(des10, ~POST5, Npop)
svytotal (~CATCH, des.ps, na.rm=TRUE)

total SE
CATCH 564206 47830

Regression estimation (Table 5.2 d)

reg.model <- svyglm(CATCH~GT, des19)
predict(reg.model, newdata=data.frame(GT=GTtot), total=N)

link SE
1 647368 47931

As in the regression estimation example (Section 4.2.3), the estimates are equal to those obtained with SAS
SURVEYMEANS and SURVEYREG, but s.e.’s somewhat different.
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