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Preface 
Handbook on sampling design and estimation methods for economic data collection in fisheries statistics was 

produced under the EU funded project SECFISH: Socio-economic data collection for fisheries, aquaculture and 

the processing industry (EU Call for Proposals Mare 2016/22: Strengthening regional cooperation in the area of 

fisheries data collection). The Work Package 2 is aimed at harmonizing the methodologies of sampling design 

and estimation methods by providing a practical manual based on the general theory of probability sampling. 

The handbook can be used by the Member States as supporting guidelines in economic data production. 

The handbook explains the general principles of probability sampling and essential requirements for a good 

quality survey plan, and covers the basic sampling techniques. Description of each design will be accompanied by 

the explanation of appropriate methods of estimation, as well as, uncertainty assessment leading to a well-based 

coefficient of variation. 

The handbook has been produced by a team of contributors including Juha Heikkinen, Jarmo Mikkola, Heidi 

Pokki and Jarno Virtanen of Natural Resources Institute Finland, Evelina Sabatella of NISEA, and Risto 

Lehtonen of University of Helsinki (main author). 
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1 Introduction 
Summary. The handbook focuses on practical sampling and estimation methods for fixed and finite populations 
of identifiable units (elements) under the conventional design-based framework. This framework is common in 
survey statistics in general and also in fisheries statistics. We discuss and demonstrate tools for the planning and 
implementation of sampling designs and estimation designs that would be statistically valid for proper inference 
and technically manageable for a given fisheries survey. 

Auxiliary information on the population plays a crucial role. By introducing suitable auxiliary information in the 
sampling and estimation procedures, statistical efficiency and cost efficiency can be managed and improved in a 
controlled way. Data on auxiliary variables are assumed available, either at the unit level in the sampling frame 
(for certain sampling designs) or as aggregates taken from reliable sources, such as official statistics (for certain 
estimation designs). Statistical models are used as assisting tools when appropriate. 

Traditional methods for element sampling are discussed: simple random sampling, systematic sampling, PPS 
sampling and stratified sampling. Cluster sampling and multi-stage designs are not treated in detail. For 
estimation of population parameters we discuss traditional methods including Horvitz-Thompson or expansion 
estimators and model-free calibration techniques as well as commonly used model-assisted methods, such as 
ratio and regression estimation and post-stratification. For the treatment of missing data we discuss imputation 
methods for item nonresponse and reweighting methods for unit nonresponse. Two case studies are presented, 
one for Italy and the other for Finland. The case studies represent different but manageable approaches for 
sampling and estimation in fisheries statistics. 

The methods are illustrated with extensive worked examples under a realistic synthetic population by using 
sampling and estimation procedures for samples of different sizes. The results are evaluated with small 
simulation experiments. General methodological conclusions are provided as well as brief guidelines for practical 
application.  

Computation tools (SAS and R) are briefly summarized in the annexes. SAS and R codes and data sets for 
worked examples in Chapters 3, 4 and 5 are made available together with the handbook on data collection 
website. 
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2 General concepts 

2.1. Census versus sample survey 
The general term survey refers to a query that is used to collect data for making inferences on a population of 
interest. The data collection method can vary. Sometimes the survey might be directed to entire population 
(census survey), but in most cases the data are collected from a share of the population (sample survey). Often the 
population information is obtained from a register (register-based survey). Survey might also be executed in the 
internet (web survey). In survey practice, combinations of different approaches are often used. For example, in a 
combined sample survey and register survey, a part of data are collected with a sample survey and additional 
information is taken from registers. This option is becoming increasingly common in fisheries statistics. 

In most cases, sufficient resources are not available for a complete census. A carefully designed sample study 
would provide results that are accurate enough for practical purposes. In order to be able to generalize the 
sample results to the population, the sampling and estimation procedures should be based on well-established 
statistical methodologies. Survey sampling methods provide tools for cost-efficient and manageable ways to 
execute the sampling and estimation procedures. This handbook presents several approaches and methods as 
well as practical applications for surveys in fisheries statistics. 

2.2 Target population and sampling frame 
Target population contains all the units or elements that we are interested in, whereas the sampling population includes 
only those units that could actually be drawn into a sample. It often happens that all of the units of the target 
population cannot be reached, for example due to missing contact information. Sampling frame, therefore, 
contains only those units of the sampling population that can possibly be drawn into a sample. The sampling 
frame is said to have over-coverage when it contains units that do not belong to the target population. The opposite 
case, under-coverage, is probably more common, referring to the case where the frame does not contain all intended 
target population units. Both quality deficiencies of the sampling frame can cause biased results and therefore 
require careful examination and cleaning if necessary, before the implementation of the sampling operations.  

The sampling frame consists of identifiable units that are attached with unique labels, for example the identification 
code of a registered fishing vessel or the PIN of a person. ID codes allow population units to be sampled and 
contacted for data collection. By using identification codes, information can be extracted from registers and 
other sources and merged with records of the sampling frame, to be used in sampling and estimation procedures.  

Important additional variables of the sampling frame are technical variables 𝑍 that are related to the sampling 
method of the survey. These include variables determining the probability of population unit to be sampled and 
stratum and cluster membership identifiers, and variables carrying information on sizes of population elements 
for unequal probability sampling methods. 

In fisheries statistics, a sample of fishing vessels is often drawn directly from the sampling frame that covers the 

intended population of vessels. Formally, a frame population is denoted 𝑈 = {1, … , 𝑘, … , 𝑁 }, it has 𝑁 

identifiable elements. In this handbook, the frame population SIMPOP consists of 𝑁 = 120 vessels. SIMPOP is 
an artificially generated population but realistic enough for illustrating the methods of the handbook. 

The population of vessels may be readily grouped into naturally existing sets called clusters. For example, a 
fisheries enterprise can manage several fishing vessels. A possible sampling scenario is to draw first a sample of 
enterprises or clusters from a sampling frame of enterprises. Then, all eligible vessels of the sample enterprises 
may constitute the element sample, leading to one-stage cluster sampling. For sampling of vessels, an element-
level sampling frame is not needed. The element frame is needed if samples of vessels are to be drawn from the 
sampled enterprises, leading to two-stage cluster sampling. Another possible scenario is to first draw a sample of 
harbors from the population of target harbors and take all eligible vessels from the sample harbors in the 
element sample. Sampling frame for drawing a sample of harbors is needed.  

Cluster sampling typically weakens statistical efficiency relative to element-level sampling, because clusters tend 
to be internally homogeneous with respect to the phenomenon of interest. Sampling from element-level frames 
is thus advisable. This approach has been adopted in the handbook. In some situations, cluster sampling may be 
justified for cost-efficiency reasons. 
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2.3 Survey variables and population parameters 
The information of primary interest attached to the units of target population is denoted with the values of study 

or target variable 𝑌 i.e. {𝑦1, … , 𝑦𝑘 , … , 𝑦𝑁}. The values 𝑦𝑘 are the unknown values of the target variable. The survey 

is carried out to obtain measurements for 𝑌, or several target variables, for elements 𝑘 ∈ 𝑠 of the sample 𝑠 that 

has been drawn from the frame population. Assuming error-free measurement, we denote by 𝑦𝑘 the sample 

values of 𝑌. 

In addition to the target variable 𝑌 and the technical variables 𝑍, the survey may include information on auxiliary 

variables or covariates 𝑋. Auxiliary information refers to the information on the population that is not of primary 
interest in the survey but can be useful for efficient sampling and estimation procedures. In general, for the 
auxiliary variables to be useful their values should be available for the sampled units. Some methods require 
population or subpopulation totals of the auxiliary variables, while other methods require their values for all units 
in the population. In the latter case, it is advisable to include the auxiliary variables in the frame population. 

The aim of survey is to estimate the unknown values of population parameters, which in general are functions of the 

population values 𝑦𝑘 of the target variable. Estimators of population parameters are functions of the sample 

values of 𝑌, the technical variables 𝑍 and the possible auxiliary variables 𝑋. Various types of estimators, i.e. 
computational algorithms, for the estimation of the population parameters of interest are discussed in the 
handbook. 

In the handbook, we mainly consider estimation of population total, the sum of the values of the target variable 
over all units of the population, given by:  

𝑡 = ∑ 𝑦𝑘
𝑁
𝑖=1 .          (1) 

Consider, for example, the population of all registered fishing vessels in a country, and let 𝑦𝑘  be the value of 

landings of vessel 𝑘 over a year, say. Then the parameter 𝑡 is the total value of the landings in the country during 
the year. Estimation of totals over subpopulations (domains, e.g., certain type of vessels or fishing) will also be 
discussed. 

Population totals are often more meaningful than population means 𝑦̅ = 𝑡/𝑁. For example, the mean value of 
landings per vessel depends heavily on the distribution of the vessel size and fishing effort. In comparisons 
between countries, it might then be more relevant to compare the total value of landings divided by the total 
costs, rather than divided by the number of vessels. 

2.4. Probability sampling and inference 
In probability sampling, a.k.a. random sampling, each unit in the population has a known positive inclusion 

probability (probability to be selected into a sample) 𝜋𝑘. The probabilistic nature of random samples guarantees 
valid statistical inference i.e. the generalization of the results to the target population by computing standard 
errors and confidence intervals for the estimators. Random sampling must be separated from non-probabilistic 
methods such as quota sampling, where there is no basis for proper statistical inference. We discuss in the 
handbook exclusively methods for probability sampling.  

The collection of the rules and techniques used in the selection of a sample is referred to as a sampling scheme. 

Under a sampling scheme the probability of selection 𝑝(𝑠) can be attached to each sample 𝑠 ⊂ 𝑈 i.e. subset of 

the population. The function 𝑝(∙) is formally called the sampling design.  

In the classical randomization or design-based inference, the values of the variable of interest 𝑌 in the population are 
regarded as fixed but unknown quantities. The only source of randomness is the sampling design. Design-based 
properties such as design expectation and variance of an estimator are evaluated under hypothetical repeated 
sampling by a given sampling design from the fixed population. We will examine these properties empirically for 
some estimators of totals by small-scale design-based simulation experiments. 
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2.5 Estimation of population parameters 
In sample surveys, the unknown value of the population parameter of interest, such as total, is estimated by 
using the observed sample values of target variable under the chosen sampling design and estimation design. 
Estimation design is characterized by the structure of an estimator, including the way how auxiliary information is 
incorporated in the estimation procedure. In the handbook, a combination of sampling design and estimation 
design is called strategy. 

Point estimation. For population total 𝑡 = ∑ 𝑦𝑘
𝑁
𝑖=1 , a common general purpose estimation design is provided 

by the Horvitz-Thompson estimator (expansion estimator), given as 

𝑡̂𝐻𝑇 = ∑ 𝑤𝑘𝑦𝑘 = ∑ 𝑦𝑘/𝜋𝑘 𝑛
𝑘=1

𝑛
𝑘=1 ,       (2) 

where sampling weights or design weights 𝑤𝑘 are defined as inverses of inclusion probabilities, i.e. 𝑤𝑘 = 1/𝜋𝑘 for 

sample element 𝑘. In HT estimation, information on the sampling design is incorporated in the estimation 
procedure by sampling weights. Calibration estimator of total, given by 

𝑡̂𝐶𝐴𝐿 = ∑ 𝑤𝐶𝐴𝐿,𝑘𝑦𝑘
𝑛
𝑘=1 ,         (3) 

is another general purpose estimation design. In CAL estimation, information on sampling and estimation 

designs is incorporated in the estimation procedure by a combined element weight 𝑤𝐶𝐴𝐿,𝑘 = 𝑤𝑘 × 𝑔𝑘, where 

𝑤𝑘 = 1/𝜋𝑘 is sampling weight and the sample-dependent weights 𝑔𝑘 are specific for each calibration estimator. 
All model-assisted estimators for total discussed in the handbook can be expressed in the form (3). 

HT estimator for population total is design unbiased: the design expectation of the estimator equals the true 
parameter value. All calibration estimators as well as model-assisted estimators of total considered in the 
handbook are design consistent; their design bias and variance tend to zero as the sample size increases. The most 
important of these estimators are nearly design unbiased, which is a favorable property of an estimator. The design 
bias of the estimator is an asymptotically insignificant contribution to its mean squared error (MSE). MSE is 
defined as the sum of design variance and squared bias of estimator. 

Quality indicators. The degree of uncertainty attached to an estimated total is measured by design variance 

𝑉𝑝(𝑠)(𝑡̂) of an estimator 𝑡̂ of a total, defined under a given sampling design and estimation design. Design 

variance is an unknown parameter and must be estimated from the sample. An estimator 𝜐̂𝑝(𝑠)(𝑡̂) of design 

variance of 𝑡̂ also depends on the applied strategy. Standard error of 𝑡̂ is defined as square root of the design 
variance and is estimated by  

𝑠. 𝑒(𝑡̂) = √𝜐̂𝑝(𝑠)(𝑡̂) .         (4) 

Coefficient of variation of total estimate is defined as  

𝑐𝑣(𝑡̂) =
𝑠.𝑒(𝑡̂)

𝑡̂
,           (5) 

often expressed as a percentage. Coefficients of variation are routinely used in official statistics when assessing 
the precision quality of estimates for publication. 

Design effect of total estimator 𝑡̂ is used in surveys to assess the efficiency of a strategy relative to a reference 
strategy, expressed as 

𝐷𝐸𝐹𝐹𝑝(𝑠)(𝑡̂) =
𝑉𝑝(𝑠)(𝑡̂)

𝑉𝑆𝑅𝑆(𝑡̂𝐻𝑇)
,        (6) 

where 𝑉𝑝(𝑠)(𝑡̂) is the design variance of estimator 𝑡̂ under the actual sampling design and 𝑉𝑆𝑅𝑆(𝑡̂𝐻𝑇) is the design 

variance of the HT estimator 𝑡̂𝐻𝑇 under the reference sampling design, usually simple random sampling without 

replacement. An estimator of 𝐷𝐸𝐹𝐹 is constructed by using the sample counterparts of the design variances and 
can be written as  

𝑑𝑒𝑓𝑓𝑝(𝑠)(𝑡̂) =
𝑣̂𝑝(𝑠)(𝑡̂)

𝑣̂𝑆𝑅𝑆(𝑡̂𝐻𝑇)
         (7) 
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The estimator 𝑡̂ of the total in the numerator variance expression may differ from that in the reference variance 
formula, as is the case for calibration and model-assisted estimators. 

By definition, if the 𝑑𝑒𝑓𝑓 is smaller than one, the actual strategy is more efficient than the reference strategy 
SRSWOR_HT, where sampling is with simple random sampling without replacement and estimation relies on 

the HT estimator. If 𝑑𝑒𝑓𝑓 = 1 then the actual and reference strategies are equally efficient. In cluster sampling, 
design effects are usually larger than one. One of the main aims of the handbook is to introduce sampling and 
estimation designs that attain improved efficiency over the SRSWOR_HT strategy. 

2.6 Estimation for population subgroups  
Estimates are often required for important population subgroups such as regional areas in a country or different 
vessel or fishing types. It is advisable to define the most important subpopulations as strata in the sampling 
design by using stratified sampling (see Section 3.6). Domains that are defined as strata are called planned domains 
and they are considered as independent subpopulations, and a separate sample is drawn from each of them. 

Sample sizes 𝑛𝑑 in planned domains are usually fixed by the sampling design. Domain estimates and their 
associated quality indicators can be readily obtained by methods of the handbook applied separately for each 
subpopulation.  

Subpopulations of interest that are not specified in advance but emerge after sampling and data collection are 

called unplanned domains and are denoted 𝑈𝑑 , 𝑑 = 1, … , 𝐷, where 𝐷 is the number of domains. Unplanned 

domains are usually non-overlapping subgroups of the population not related to the sampling design. A single 𝑛 

element sample has been drawn, and sample sizes 𝑛𝑑 for domains are not controlled by the sampling design but 

are random quantities such that ∑ 𝑛𝑑 = 𝑛𝐷
𝑑=1 , the overall sample size. Sample sizes in some domains can be 

small (even zero) and special techniques of small area estimation may be needed.  

The random nature of domain sample sizes affects inference. Formally, there are two different approaches for 
inference for unplanned domains. In an unconditional approach, inference is based on hypothetical repeated 

sampling with sampling design 𝑝(𝑠) such that the overall sample 𝑠 of 𝑛 elements is allowed to distribute 

randomly over domain samples 𝑠𝑑 ⊂ 𝑠, 𝑑 = 1, … , 𝐷. Thus, all possible domain sample configurations are 
considered when averaging over variations in domain sample size, including configurations that did not occur. In 

the conditional approach, the procedure is conditional given the observed configuration of the 𝑛 element sample 𝑠 

into domain samples 𝑠𝑑. Thus, only samples whose domain sample sizes correspond to the observed domain 
sample sizes are considered.  

The inferential approach together with the chosen sampling and estimation designs affects the estimation. 
Typically, variances of total estimators under the unconditional approach tend to be larger than those of the 
conditional approach. The situation is similar as in post-stratification. 

In practice, point and variance estimators for unplanned domains under the unconditional approach can be 

constructed by using extended domain variables defined as 𝑦𝑑𝑘 = 𝑦𝑘 if 𝑘 ∈ 𝑈𝑑 and zero otherwise. The population 

total in domain 𝑑 can thus be expressed as 𝑡𝑑 = ∑ 𝑦𝑑𝑘
𝑁
𝑖=1 , 𝑑 = 1, … , 𝐷. For example, Horvitz-Thompson 

estimator (2) of domain total 𝑡𝑑 for domain 𝑑 takes the form  

𝑡̂𝑑𝐻𝑇 = ∑ 𝑤𝑘𝑦𝑑𝑘 = ∑ 𝑦𝑑𝑘/𝜋𝑘 𝑛
𝑘=1

𝑛
𝑘=1 .        (8) 

For variance estimation of 𝑡̂𝑑𝐻𝑇 under the unconditional approach, the extended domain variable values 𝑦𝑑𝑘 are 

inserted in variance expressions instead of the original values 𝑦𝑘 . In the conditional approach, where domain 
sample sizes are considered fixed and the domains are treated as independent subpopulations, the original values 

𝑦𝑘 are used in variance formulas. Instead of HT estimation, various model-assisted and calibration methods can 
be used, such as ratio estimation and post-stratification. 

Design-based estimation for domains is discussed for example in Lehtonen & Veijanen (2009). Hidiroglou & 
Patak (2004) compared the conditional and unconditional approaches for various estimators of totals for 
unplanned domains. Some of the pioneering authors in the area, e.g. Durbin (1969) and Holt and Smith (1979), 
as well as more recent contributors (e.g. Särndal et al. 1992) favoured the conditional approach of inference for 
unplanned domains. 
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We demonstrate in sections 3.3.5 and 4.2.4 the various approaches for the estimation of domain totals and their 
design variances in connection to simple random sampling, HT estimation and post-stratification by using tools 
available in SAS survey programs. 
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3 Basic sampling methods 

3.1 Sampling designs 
Basic sampling designs for surveys can be divided into methods for element sampling and methods for multi-
stage sampling, where the latter group consists of combinations of element sampling methods. A selection of 
methods is listed and characterized in Table 3.1. 

Table 3.1 Basic sampling designs for sampling from finite populations. 

Basic sampling designs 

 

Auxiliary data needed in sampling 
frame 

Level and source of auxiliary 
data 

A. Element sampling  

Equal probability sampling designs 

(1) Simple random sampling SRS  Element identification variable 
Unit-level 

Sampling frame 
(2) Systematic sampling SYS Element identification variable 

Implicit stratification: Sorting variable 

Unequal probability sampling designs 

(3) Sampling with probability 
proportional to size PPS 

Element identification variable 

Size measure variable for elements Unit-level 

Sampling frame (4) Balanced sampling Element identification variable 

Balancing variables 

(5) Stratified sampling STR  

 

Element /cluster identification variable 

Stratification variables (categorical) 

Element sampling: Unit-level 

Cluster sampling: Cluster level 

Sampling frame Optimal and power allocation: Additional 
auxiliary information needed 

B. Multi-stage cluster sampling  

(6) One-stage cluster sampling with 
SRS or SYS 

Cluster identification variable 

Cluster level 

Sampling frame for clusters 

(7) One-stage cluster sampling with 
PPS 

Cluster identification variable  

Size measure for clusters 

(8) Stratified one-stage cluster 
sampling 

Cluster identification variable 

Stratification variables for clusters 

(9) Stratified two-stage (multi-stage) 
cluster sampling 

Cluster identification variable 

Stratification variables for clusters 

Element identification variable for sample 
clusters 

Cluster level 

Sampling frame for clusters 

Sampling frame for elements in 
sample clusters  

The basic sampling techniques in Table 3.1 part A constitute methods for drawing population elements into the 
sample. Simple random sampling (SRS sampling) and systematic sampling (SYS sampling) are equal probability sampling 
methods: the probability of population element to be included in the sample is the same for all population 
elements. Probability proportional to size sampling (PPS sampling) and balanced sampling are unequal probability sampling 
methods, where the inclusion probabilities can vary between elements. These four methods are used for obtaining 
probability samples from the target population of the sample survey.  

In stratified sampling (STR sampling), population elements are first grouped into non-overlapping subpopulations 
called strata. The strata are independent subpopulations, and a sample of elements is drawn from each stratum by 
one of the methods (1)-(4) in Table 3.1. The number of sample elements (individual elements or groups of 
elements called clusters) drawn from each stratum is defined by allocation methods. Stratified sampling can thus be 
applied for sampling of individual elements or groups of elements or clusters.  
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Part B contains combinations of methods of part A of varying complexity, depending on the requirements of the 
survey. For example in stratified cluster sampling, the population of clusters is first stratified. A sample of 
clusters is then drawn from each stratum, and the individual elements are selected from the sample clusters. In 
the handbook we discuss element sampling designs of part A, methods (1) to (3) and stratified sampling (5), 
which constitute the most popular schemes in fisheries statistics practice. 

3.2 SIMPOP population 
Computational examples in the handbook are based on an artificial population SIMPOP containing complete 
records for N = 120 fishing vessels (elements, units) on p = 20 variables. Table 3.2 presents the list of variables 
in SIMPOP. All variables are of numeric type.  

Variables in the SIMPOP represent typical variable types in fisheries statistics at reference year. Variable ID is 
unique vessel identification code obtained from a vessel register. Variable STR3 is stratum variable for stratified 
sampling. For stratification, every population vessel is assigned a value indicating stratum membership. STR3 has 
been constructed by dividing the 120 population vessels into three equal-sized groups based on variable GT 
(vessel tonnage), whose values are known for all population vessels. The role of variable DOM01 is different. 
While STR3 is used in the sampling phase for the grouping of the population vessels into strata, DOM01 is not 
related to the sampling design. DOM01 is used for grouping of population elements after drawing the sample 
and data collection. The variable will be used in estimation for population subgroups (domains) and in post-
stratification. DOM01 indicates whether a vessel catches "expensive" fish (DOM01 = 1) or not (DOM01 = 0). 
ACTIVITY indicates whether a vessel has been active in the reference time period considered (ACTIVITY = 1) 
or not (ACTIVITY=0). Of the 120 population vessels, 100 are coded active and 20 non-active. The main share 
of computational examples in this section consider the set of active vessels. 

Table 3.2. The list of variables in the SIMPOP data set. 

Variables in Creation Order 

# Variable Label 

1 ID Unique identification code 

2 STR3 Stratum variable (3 strata)  

3 DOM01 Fishing type (domain variable with 2 classes) 

4 LENGTH Length of vessel (meters) 

5 GT Vessel tonnage (GT) 

6 kW Engine power (kW) 

7 ACTIVITY Vessel activity indicator (1=active, 0=otherwise) 

8 DAS Days at sea 

9 GT_DAS GT_Days 

10 kW_DAS kW_Days 

11 CATCH Catch (ton) 

12 VALUE Value of landings (Euro) 
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Variables in Creation Order 

# Variable Label 

13 FUEL Fuel costs 

14 LABOR Labour costs 

15 OTHER_VAR Other variable costs 

16 REPAIR Repair costs 

17 OTHER_NONVAR Other non-variable costs 

18 TOTAL_COST Total costs 

19 GROSS_PROFIT Gross profit 

In the examples of this section, some variables in SIMPOP are treated as target variables (variables of interest) 
and some are auxiliary variables. The target variables are of main interest in a fishery survey. Data for the target 
variables are collected from a sample drawn for the survey and further, incorporated in the estimation 
procedures. There are 9 potential target variables in SIMPOP. Values of these variables are coded zero for non-
active vessels. Examples of relevant target variables are CATCH, VALUE and TOTAL_COST.  

Data for the auxiliary variables are often taken from national registers on fishery or other administrative data 
sources. Some auxiliary variables are used in the sampling phase and they must be included in the sampling 
frame. Examples are STR3 for stratified sampling and GT for size variable in PPS sampling. Some auxiliary 
variables are used the estimation procedures. Variables GT and DAS (if included in frame) are examples of 
auxiliary variables suitable for ratio and regression estimation. In the worked examples, we assume that data for 
the auxiliary variables are available as aggregate-level values or unit-level values of the auxiliary variables, 
depending on the requirements of the chosen method. 

In our examples, the roles of some variables can change depending on the given statistical data infrastructure. 
For example, in some examples variable days at sea (DAS) is treated as auxiliary variable. In this case, data on 
DAS are available for all vessels in the population. In some cases, DAS is a target variable and then its 
measurements are assumed known for sample vessels only. The variable ACTIVITY is treated as auxiliary 
variable in most cases. Descriptive statistics on selected variables in the entire SIMPOP are presented in Table 
3.3. The data set contains both active and inactive vessels. 

Table 3.3 Descriptive statistics of selected variables in the SIMPOP data set (all vessels).   

Variable N Mean Total Minimum Maximum 

CATCH 120 5200 624036 0 13391 

VALUE 120 1622301 194676173 0 5278581 

TOTAL_COST 120 1041983 125037964 0 3059456 

GROSS_PROFIT 120 580318 69638209 -36978 2263956 

DAS 120 152.56667 18308 0 250.00000 
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Variable N Mean Total Minimum Maximum 

GT 120 326.45750 39175 210.60000 444.60000 

kW 120 831.52427 99783 426.46500 1332 

GT_DAS 120 50326 6039087 0 103565 

kW_DAS 120 128476 15417180 0 309024 

In the table, the first four variables are potential target variables for our examples and the rest are candidates for 
auxiliary variables. For the non-active vessels, the population values of the four target variables and the variable 
DAS are coded zero.  

We next concentrate on the population of active vessels, where measurements for the target variables are 
available. Let us first examine the relations between the target variables. Table 3.4 presents their pair-wise 
correlations. The target variables appear strongly correlated. Highest correlation (0.98) is for VALUE and 
GROSS_PROFIT and lowest (0.56) is for CATCH and GROSS_PROFIT. 

Table 3.4. Correlation matrix of selected target variables.  

Pearson Correlation Coefficients, N = 100 

  CATCH VALUE TOTAL_COST GROSS_PROFIT 

CATCH 

 

1.00000 0.61567 0.64087 0.56149 

VALUE 

 

0.61567 1.00000 0.97758 0.97664 

TOTAL_COST 

 

0.64087 0.97758 1.00000 0.90948 

GROSS_PROFIT 

 

0.56149 0.97664 0.90948 1.00000 

Scatter Plot Matrix of target variables is presented in Figure 3.1. The mutual relationships of the three target 
variables appear to be of linear type. For CATCH, there seems to be two groups of vessels separated by 
VALUE, TOTAL_COST and GROSS_PROFIT.  

 

Figure 3.1 Scatter Plot Matrix of the three target variables (active vessels).  
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The availability of high-quality auxiliary data is a cornerstone for developing efficient estimation designs in 
fisheries statistics. It is thus important to put resources on collecting such data. For improved accuracy, it is 
beneficial if the auxiliary variables have strong relationship with the target variables. Correlation matrix of target 
variables with DAS, GT and kW is displayed in Table 3.5.  

The table shows that CATCH correlates quite strongly with DAS, GT and kW. The corresponding correlations 
of TOTAL_COST are somewhat weaker and for GROSS_PROFIT even more weaker. Obviously, GT and kW 
correlate strongly, but the correlation of DAS with GT and kW is weak. 

Table 3.5 Correlations of selected target variables with auxiliary variables (active vessels). 

Pearson Correlation Coefficients, N = 100 

 DAS GT kW 

CATCH 

 

0.66039 0.55892 0.49882 

VALUE 

 

0.42809 0.27729 0.18079 

TOTAL_COST 

 

0.44040 0.42185 0.33924 

GROSS_PROFIT 

 

0.39574 0.11694 0.01071 

The table shows that CATCH correlates quite strongly with DAS, GT and kW. The corresponding correlations 
of TOTAL_COST are somewhat weaker and for GROSS_PROFIT even more weaker. Obviously, GT and kW 
correlate strongly, but the correlation of DAS with GT and kW is weak.  

Figure 3.2 contains Scatter Plot Matrices of the four target variables with selected auxiliary variables, divided into 
four submatrices. Panels A, B, C and D indicate the association of each target variable with the three selected 
auxiliary variables, as well as the mutual relations between the three auxiliaries.  

 

A. CATCH against DAS, GT and kW 

 

B. VALUE against DAS, GT and kW 
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C. TOTAL_COST against DAS, GT and kW 

 

D. GROSS_PROFIT against DAS, GT and kW 

Figure 3.2 Scatter Plot Matrices of the four target variables with three auxiliary variables (active vessels).  

Let us consider the derived variables GT_DAS and kW_DAS, which are constructed as products of GT with 
DAS and kW with DAS, respectively, for further illustration of relations between the target variables and 
auxiliary variables. Scatter Plot Matrix is in Figure 3.3. 

 

Figure 3.3 Scatter Plot Matrix of the four target variables with GT_DAS and kW_DAS (active vessels).  

Pearson correlation coefficients of the variables are collected in Table 3.6. The new variables GT_DAS and 
kW_DAS indicate stronger relations to the target variables than the auxiliary variables DAS, GT and kW in the 
previous figure. The table shows that correlations of GT_DAS and kW_DAS with CATCH are substantial and 
pretty large with TOTAL_COST. GROSS_PROFIT seems to be less correlated to these auxiliary variables.  

Table 3.6 Correlation of the four target variables with GT_DAS and kW_DAS (active vessels).  

Pearson Correlation Coefficients, N = 100 

  CATCH VALUE TOTAL_COST GROSS_PROFIT 

GT_DAS 

 

0.84440 0.50048 0.60103 0.37471 

kW_DAS 

 

0.79492 0.41083 0.54064 0.25935 

Accuracy gains can be substantial if the relation between a target variable and an auxiliary variable is strong. 
Gains may remain minor if the relation is weak. A careful examination of the relations between the target 
variables and potential auxiliary variables is an important task in a fishery survey process. For stratified sampling 
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and PPS sampling, the relations can be studied from previous fishery surveys, for example. For calibration and 
model-assisted estimation with ratio or regression estimation, the collected survey data itself provides a source of 
information for the relations. We present in Chapter 6 estimation results for several target variables.  

In our discussion this far, the variable DAS was treated as an auxiliary variable whose values are available at the 
unit (vessel) level in the sampling frame. This is possible in a number of fisheries where logbook data are 
available. In this case, DAS can be used both in the sampling phase or in the estimation phase. In other cases, 
data on DAS must be collected from a sample of active vessels. DAS cannot be used in the sampling phase but 
the use in the estimation phase is still possible, if aggregate-level data on DAS are available as population totals 
or means.  

The population data set SIMPOP was constructed to contain complete records on both target variables and 
auxiliary variables, for all active vessels. We can thus compute numerical values for true population parameters, 
such as totals, and compare them with their sample-based estimates. This is important for pedagogical purposes.  

In practice, however, the values of target variables are assumed known for the sample vessels only, and the 
population values are unknown. Still, values for auxiliary variables may be available in the sampling frame or at 
least as aggregates. 

3.3 Simple random sampling 

3.3.1 Background  

Simple random sampling (SRS) suites for situations where useful auxiliary information is not available. In such 
cases it is reasonable to assign equal selection probability for each unit of the population. Simple random 
sampling is also a natural candidate for a reference method when comparing the efficiency of other sample 
selection methods. Furthermore, SRS is often integrated into more complex sampling procedures for the final 
randomization. Auxiliary information is, however, not utilized in the SRS sampling, even though it would be 
available.  

3.3.2 Sample selection techniques 

An equal selection probability is a common factor in the sample selection techniques of simple random sampling. 

In a population 𝑈 = {1, … , 𝑘, … , 𝑁} of 𝑁 units, the probability of inclusion of element 𝑘 in a 𝑛 element simple 

random sample is 𝜋𝑘 = 𝜋 = 𝑛/𝑁 for every population element 𝑘 ∈ 𝑈. SRS designs are thus equal probability 
sampling designs. 

There are three main sample selection techniques in SRS sampling: Bernoulli sampling, simple random sampling 
with replacement  and simple random sampling without replacement. In Bernoulli sampling, a random number 
from uniform (0,1) distribution is drawn and attached to each element of the population. Then all the elements 

with random number smaller than a pre-fixed constant 𝜋 = 𝑛/𝑁 are drawn into the sample. In practice, 
sampling is carried out in a list-sequential manner applied to the sampling frame. Bernoulli sampling is a without-
replacement type sampling technique. Because of the selection method, sample size in Bernoulli sampling is 

random with expected value 𝐸(𝑛𝑠 ) = 𝑁𝜋. In conditional Bernoulli sampling only samples of size 𝑛 are accepted. 

Replacement of drawn element after each random draw (Simple random sampling with replacement, SRSWR) 

guarantees that the inclusion probability remains equal for each draw. To draw a SRSWR sample of size 𝑛, the 

first element is drawn with probability 1/𝑁 and put back into the frame. The procedure is repeated 𝑛 times to 
obtain the sample; the same unit can appear more than once in the sample. Samples from SRSWR are 
independent and the design variances of estimators are simpler than for without-replacement type designs. 
However, SRSWR is rarely used in sampling practice. The more common SRS method for practical purposes is 
simple random sampling without replacement (SRSWOR). Inclusion probability is still equal for each element in each 
separate draws, but the probability changes draw by draw as the draw progresses, because the number of 
elements in population frame decreases after each draw.  

3.3.3 Estimation of parameters 

The Horvitz-Thompson estimator (2) of the population total 𝑡 = ∑ 𝑦𝑘
𝑁
𝑘=1  under simple random sampling takes 

the form 
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𝑡̂𝐻𝑇 = ∑ 𝑤𝑘𝑦𝑘 = 𝑁/𝑛 × ∑ 𝑦𝑘
𝑛
𝑘=1

𝑛
𝑘=1 = 𝑁 × 𝑦̂̅𝐻𝑇 ,     (9) 

where the sampling weights are constant 𝑤𝑘 = 𝑁/𝑛, 𝑛 is the sample size, and 𝑁 is the population size. 

Population mean 𝑌̅ = 𝑡/𝑁 is estimated by the sample mean 𝑦̂̅𝐻𝑇 =
𝑡̂𝐻𝑇

𝑁
= ∑ 𝑦𝑘/𝑛𝑛

𝑘=1 .  

Design variance of (9) for simple random sampling without replacement (SRSWOR) is given by  

𝑉𝑆𝑅𝑆𝑊𝑂𝑅(𝑡̂𝐻𝑇) = 𝑁2 (1 −
𝑛

𝑁
) 𝑆2/𝑛  

and the variance is estimated by 

𝜈̂𝑆𝑅𝑆𝑊𝑂𝑅(𝑡̂𝐻𝑇) = 𝑁2 (1 −
𝑛

𝑁
) 𝑠̂2/𝑛       (10) 

where 𝑆2 = ∑ (𝑦𝑘 − 𝑌̅)2/(𝑁 − 1)𝑁
𝑘=1  is the population variance of the target variable Y and 𝑠̂2 =

∑ (𝑦𝑘 − 𝑦̂̅𝐻𝑇)2/(𝑛 − 1)𝑛
𝑘=1  is the sample counterpart. The term 1 −

𝑛

𝑁
 is the so-called finite population correction 

factor (FPC factor) that channels the effect of relative sample size (sampling fraction 𝑓 = 𝑛/𝑁) to the variance 
formulas. 

Standard error and coefficient of variation for total estimate 𝑡̂𝐻𝑇 are estimated by formulas (4) and (5), 
respectively. For SRSWOR, the design effect is equal to one because sampling and estimation designs are the 
same in the numerator and denominator. 

For simple random sampling with replacement (SRSWR), the design variance is 𝑉𝑆𝑅𝑆𝑊𝑅(𝑡̂𝐻𝑇) = 𝑁2 (1 −

1

𝑁
) 𝑆2/𝑛, and the design effect is 𝐷𝐸𝐹𝐹𝑆𝑅𝑆𝑊𝑅(𝑡̂𝐻𝑇) =

𝑉𝑆𝑅𝑆𝑊𝑅(𝑡̂𝐻𝑇)

𝑉𝑆𝑅𝑆𝑊𝑂𝑅(𝑡̂𝐻𝑇)
=

𝑁−1

𝑁−𝑛
. Simple random sampling with 

replacement (SRSWR) is, therefore, less efficient than simple random sampling without replacement (SRSWOR), 

for sample sizes bigger than one (𝑛 > 1). 

3.3.4 Worked example 

Preliminaries. We consider here the population of 𝑁 = 100 active vessels in SIMPOP. We execute the 
estimation of the population total of variable CATCH in the case where no auxiliary data are assumed, except the 

size 𝑁 of the population (this piece of information is needed for variance estimation). We use the basic 
estimation strategy SRSWOR_HT, where the element sample is drawn by simple random sampling without 
replacement (SRSWOR), and the estimation relies on the Horvitz-Thompson (HT) estimator.  

We demonstrate the effect of the sample size to variance, standard error, coefficient of variation and design 
effect estimates of the estimated total.  

Sample selection. Our first SRSWOR sample size is 𝑛 = 5 active vessels and thus, we draw a 5% sample from 
SIMPOP. The realized sample is listed in Table 3.7. SAMPLE1 represents one of the possible samples of size 

𝑛 = 5 active vessels that can be drawn with SRSWOR from SIMPOP. The sample has been drawn with the SAS 
procedure SURVEYSELECT. The variable SAMPLINGWEIGHT generated by the procedure is sampling 
method specific and is included in the sample data set by default. 

Table 3.7 SAMPLE1 of 𝑛 = 5  active vessels drawn from SIMPOP of 𝑁 = 100 vessels.  

Obs 
k 

ID CATCH 

𝑦𝑘  

SamplingWeight 

 𝑤𝑘  

1 1 3541.44 20 

2 44 4421.92 20 

3 49 11355.97 20 

4 55 6865.42 20 

5 93 9942.19 20 

Sum  36126.94 100 
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Estimation. Let us compute the estimates for CATCH from SAMPLE1 by using the computational formulas of 

Section 3.3.3. Because for SRSWOR the inclusion probabilities 𝜋𝑘   are constants i.e. 𝜋𝑘 = 𝜋 =  5/100 =  0.05 

for all active vessels in the population, the weights 𝑤𝑘 for the sample vessels also are constants: 𝑤𝑘 = 𝑤 =
1/𝜋 =  20, and the sum of weights is 100 (= 𝑁). The weights are needed in the construction of the HT 

estimator 𝑡̂𝐻𝑇 for CATCH total. By using the Horvitz-Thompson estimator (9) we obtain: 

𝑡̂𝐻𝑇 = ∑ 𝑤𝑘𝑦𝑘 = 20 × ∑ 𝑦𝑘
5
𝑘=1 = 20 × 36126.94 = 7225395

𝑘=1 . 

It is noted that a HT estimator of a total is simply a sum of weighted sample observations of the target variable 

𝑌, where weights are inverses of the inclusion probabilities.  

For statistical inference we need a variance estimate 𝜈̂𝑆𝑅𝑆𝑊𝑂𝑅(𝑡̂𝐻𝑇) and standard error estimate 𝑠. 𝑒(𝑡̂𝐻𝑇) of the 

total estimate𝑡̂𝐻𝑇. By (10), variance is estimated by 

𝜈̂𝑆𝑅𝑆𝑊𝑂𝑅(𝑡̂𝐻𝑇) = 1002 (1 −
5

100
) 𝑠̂2/5 = 1478232, 

where sample variance of CATCH is 𝑠̂2 = 11500800.86. Standard error estimate is 𝑠. 𝑒(𝑡̂𝐻𝑇) = 147823. 

By using the estimated total and its 𝑠. 𝑒 we compute a two-sided 95% confidence interval for the estimated total. 

The interval is calculated as 𝑡̂𝐻𝑇 ± 𝑠. 𝑒(𝑡̂𝐻𝑇) × 𝑡𝑑𝑓,𝛼/2 where 𝑡𝑑𝑓,𝛼/2 is the chosen 100 (1 −
𝛼

2
) = 97.5  

percentile point of the t distribution with 𝑑𝑓 = 𝑛 − 1 = 4 degrees of freedom and 𝛼 = 0.5. For lower limit we 

get 𝐿𝐶𝐿(𝑡̂𝐻𝑇) = 312117 and for upper limit 𝑈𝐶𝐿(𝑡̂𝐻𝑇) = 1132960. The interval is quite wide. 

Coefficient of variation for 𝑡̂𝐻𝑇 is calculated by (5) as 𝑐𝑣(𝑡̂𝐻𝑇) =
𝑠.𝑒(𝑡̂𝐻𝑇)

𝑡̂𝐻𝑇
=

147823

722539
= 0.20. 

The design effect estimate of 𝑡̂𝐻𝑇  is 𝑑𝑒𝑓𝑓(𝑡̂𝐻𝑇) = 1 in the SRSWOR design. By using the SAS procedure 
SURVEYMEANS we obtain the results in Table 3.8.  

Table 3.8 Estimated total, standard error and coefficient of variation for variable CATCH from SRSWOR 

sample SAMPLE1 of 𝑛 = 5 vessels.  

Variable 
True  
value 

n Sum of Weights 
Total 

𝑡̂ 

Std Dev 

𝑠. 𝑒(𝑡̂) 
95% CL  

Coeff of Var  

𝑐𝑣(𝑡̂) 

CATCH 624036 5 100.000000 722539 147823 312117.193 1132960.36 0.204588 

The estimated total is 𝑡̂𝐻𝑇 = 722539 , standard error is 𝑠. 𝑒(𝑡̂𝐻𝑇) = 147823 and coefficient of variation is 

𝑐𝑣(𝑡̂𝐻𝑇) = 0.204588  i.e. 20%. The figures are the same as obtained by the computational formulas. The true 

parameter value is 𝑡 = 624036 and for SAMPLE1 of n = 5 vessels, the 95% confidence interval would cover 
the true value. But the confidence interval is too wide for any practical purposes. The results seem not reliable 
enough.  

We next draw a larger SRSWOR sample SAMPLE2 of size of 𝑛 = 20 vessels. Estimates computed by 
SURVEYMEANS are in Table 3.9. Estimated standard error of total estimate is now much smaller than that 

from SAMPLE1 of 𝑛 = 5 vessels. The estimated total is much closer to the true value, and the confidence 
interval is substantially narrower than for SAMPLE1. Not surprisingly, we obtain more precise estimation from a 
larger sample. 
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Table 3.9 Estimated total, standard error and coefficient of variation for variable CATCH from SRSWOR 

sample SAMPLE2 of 𝑛 = 20 vessels.  

Variable 
True 
value 

n Sum of Weights 
Total 

𝑡̂ 

Std Dev 

𝑠. 𝑒(𝑡̂) 
95% CL  

Coeff of Var  

𝑐𝑣(𝑡̂) 

CATCH 624036 20 100.000000 610603 54439 496661.885 724544.886 0.089156 

Simulation experiment. We noted that the estimated total of CATCH from SAMPLE1 is far from the true 
value. This is because of the randomization mechanism underlying the sampling technique. To throw more light 

on this, we carry out a small pedagogic simulation experiment. We draw a reasonable number, let say 𝐾 =
100 SRSWOR samples of small size 𝑛 = 5  vessels from SIMPOP, compute the estimated total, standard error 
and coefficient of variation from each sample, and compute the mean of the statistics from the 100 samples. 

Then we do the same for a larger sample size 𝑛 = 20. The results are in Table 3.10.  

Table 3.10 Means of estimated totals, standard errors and coefficients of variation for CATCH from K = 100 

simulated SRSWOR samples of sizes 𝑛 = 5  and 𝑛 = 20 vessels from SIMPOP.  

Method VarName Replicates 

Averages over simulations 

SumWgt n 
Total 

𝑡̂ 

StdDev 

𝑠. 𝑒(𝑡̂) 

CV 

𝑐𝑣(𝑡̂) 

SRSWOR CATCH 100 100.000000 5 629966 91436 0.145160 

SRSWOR CATCH 100 100.000000 20 626895 44061 0.070264 

True total     624036   

The following conclusions can be drawn. On average, the estimated totals tend to closely coincide with the true 
total. This holds for both sample sizes. The important property of design unbiasedness of the HT estimator is 
often appreciated in official statistics production. Official statistics tends to be a quite conservative affair and in 
that framework, people often want to stay on the safe side and try to avoid unpredictable design bias. Further, 
the average standard error and coefficient of variation decline when sample size increases. This means that for 

samples of size 𝑛 = 20, the spread of total estimates computed from sample replicates are more condensed 

around the true total than those of samples of size 𝑛 = 5  vessels.  

The average coefficient of variation (cv) is 14% for sample size 𝑛 = 5  and 7% for 𝑛 = 20. This means that with 
four times larger sample the gain in efficiency is substantial. However, increasing the sample size for improved 
statistical efficiency is not necessarily optimal for cost efficiency. With a fixed sample size n, statistical efficiency 
can be improved over SRSWOR by a more effective sampling design, e.g. stratified sampling or PPS sampling, or 
by using auxiliary information in the estimation phase, for example with calibration or regression estimation. 

3.3.5 Estimation for domains 

Estimates are often requested for unplanned domains i.e. population subgroups that are not defined as strata in 
the sampling design. Principles for estimation for unplanned domains under the conditional and unconditional 
approaches was discussed in Section 2.5. We estimate the domain totals of CATCH for the SRSWOR sample 

SAMPLE2 of 𝑛 = 20 vessels under strategy SRSWOR_HT. Strategy SRSWOR_RAT is applied for domain 
estimation in Section 4.2.4. 

The domain variable DOM01 (type of fishing) indicates whether a vessel catches "expensive" fish (DOM01 = 1) 

or not (DOM01 = 0). DOM01 creates two unplanned domains whose sample sizes 𝑛𝑑 are not controlled by the 
sampling design. The distribution of the data into the two domains is in the set-up below.  
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Domain 

𝑑 

Sample 

𝑛𝑑 

Sum of Weights  

𝑁̂𝑑 

Population 

𝑁𝑑 

Population totals  
of CATCH 

0 12 60 70 457163 

1 8 40 30 166873 

Sum 20 100 100 624036 

Estimate 𝑁̂𝑑  is the sum of sampling weights 𝑤𝑘  in domain 𝑑 (𝑑 = 0,1) defined as the HT estimate of domain 

size 𝑁𝑑 in population. Note that 𝑁̂𝑑 are not equal to the population counterparts 𝑁𝑑 as would be the case if the 
domains were planned type domains. 

Horvitz-Thompson estimator (2) of domain total 𝑡𝑑 of CATCH for domain 𝑑 can be expressed as 𝑡̂𝑑𝐻𝑇 =

∑ 𝑤𝑘𝑦𝑘 = 5 ×  ∑ 𝑦𝑘𝑘∈𝑠𝑑𝑘∈𝑠𝑑
, where notation 𝑘 ∈ 𝑠𝑑 means summation over sample elements in domain 

sample 𝑠𝑑, and 𝑑 = 0 for the first domain and 𝑑 = 1 for the second domain. HT estimates for domain totals 
under conditional and unconditional approaches are: 

Domain 0: 𝑡̂0𝐻𝑇 = ∑ 𝑤𝑘𝑦𝑘 = 5 × ∑ 𝑦𝑘 = 419536𝑘∈𝑠0𝑘∈𝑠0
  

Domain 1: 𝑡̂1𝐻𝑇 = ∑ 𝑤𝑘𝑦𝑘 = 5 ×  ∑ 𝑦𝑘 = 191067𝑘∈𝑠1𝑘∈𝑠1
  

The sum of domain estimates equals the total estimate for the entire population in Table 3.9, so the HT 
estimator is additive. Three scenarios are applied for variance estimation. 

Scenario 1: Estimation under the conditional approach with known 𝑁𝑑 . Domains are treated as independent 
subpopulations similarly as for planned domains i.e. strata. For variance estimation we use the estimator (13) of 

Section 3.5.3 separately for each domain 𝑑, given by  

𝜈̂𝑆𝑅𝑆𝑊𝑂𝑅(𝑡̂𝑑𝐻𝑇) = 𝑛𝑑 (1 −
𝑛𝑑 

𝑁𝑑
) ∑ (𝑤𝑘𝑦𝑘 − 𝑡̂𝑑𝐻𝑇/𝑛𝑑)2/(𝑛𝑑 − 1)𝑘∈𝑠𝑑

,  

where 𝑡̂𝑑𝐻𝑇 = ∑ 𝑤𝑘𝑦𝑘𝑘∈𝑠𝑑
 is the HT estimator of domain total in domain 𝑑, 𝑑 = 0,1. Original values 𝑦𝑘 are 

used in the estimator. Variance estimates for domain totals are 

Domain 0: 𝜈̂𝑆𝑅𝑆𝑊𝑂𝑅(𝑡̂0𝐻𝑇) = 12 × (1 −
12

70
) × 2580705499.1/(12 − 1) = 482982  

Domain 1: 𝜈̂𝑆𝑅𝑆𝑊𝑂𝑅(𝑡̂1𝐻𝑇) = 8 × (1 −
8

30
) × 349481459.16/(8 − 1) = 171142  

Scenario 2: Estimation under the conditional approach with unknown 𝑁𝑑 . This situation is often met in practice. 

Original values 𝑦𝑘 are again used. Variance estimator is  

𝜈̂𝑆𝑅𝑆𝑊𝑅(𝑡̂𝑑𝐻𝑇) = 𝑛𝑑 ∑ (𝑤𝑘𝑦𝑘 − 𝑡̂𝑑𝐻𝑇/𝑛𝑑)2/(𝑛𝑑 − 1)𝑘∈𝑠𝑑
,  

Note that there is no fpc, contrary to Scenario 1. Variance estimates are: 

Domain 0: 𝜈̂𝑆𝑅𝑆𝑊𝑅(𝑡̂0𝐻𝑇) = 12 × 2580705499.1/(12 − 1) = 530602  

Domain 1: 𝜈̂𝑆𝑅𝑆𝑊𝑅(𝑡̂1𝐻𝑇) = 8 × 349481459.16/(8 − 1) = 199852  

Standard errors increase relative to Scenario 1, because we did not have access to 𝑁𝑑 .  

Scenario 3. Estimation under the unconditional approach. Estimates for domains are computed using extended 

domain variables with values 𝑦𝑑𝑘 = 𝑦𝑘 if 𝑘 ∈ 𝑈𝑑 and zero otherwise, 𝑑 = 0,1, involving two extended domain 

variables 𝑦0𝑘 and 𝑦1𝑘. Hence, the Horvitz-Thompson estimator (2) of domain total 𝑡0 for domain 0 is 𝑡̂0𝐻𝑇 =
∑ 𝑤𝑘𝑦0𝑘 ,𝑛

𝑘=1  and 𝑡̂1𝐻𝑇 = ∑ 𝑤𝑘𝑦1𝑘,𝑛
𝑘=1 , leading to same numerical estimates as for scenarios 1 and 2 under the 

conditional approach. Variance estimator for domain 𝑑 is expressed as (Lehtonen & Veijanen 2009 p. 227): 

𝜈̂𝑆𝑅𝑆𝑊𝑂𝑅(𝑡̂𝑑𝐻𝑇) = 𝑛 (1 −
𝑛

𝑁
) ∑ (𝑤𝑘𝑦𝑑𝑘 − 𝑡̂𝑑𝐻𝑇/𝑛)2/(𝑛 − 1)𝑘∈𝑠 , 
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where 𝑡̂𝑑𝐻𝑇 = ∑ 𝑤𝑘𝑦𝑑𝑘𝑘∈𝑠  , 𝑑 = 0,1, is the HT estimator of domain total of the extended domain variable 𝑦𝑑𝑘 

for the entire sample. Note that the sum extends over all elements in the sample and 𝑦𝑑𝑘 = 0 for elements 

outside domain 𝑑, but also these elements contribute to the variance estimate for the domain because 𝑡̂𝑑𝐻𝑇 is 
nonzero. Variance estimates are: 

Domain 0: 𝜈̂𝑆𝑅𝑆𝑂𝑊𝑅(𝑡̂0𝐻𝑇) = 20 × 8447718032.6/(20 − 1) = 843442  

Domain 1: 𝜈̂𝑆𝑅𝑆𝑊𝑂𝑅(𝑡̂1𝐻𝑇) = 20 × 3087490102.7/(20 − 1) = 509902  

Estimates were computed by SAS procedure SURVEYMEANS (Section A.3). For Scenario 1, we estimated 

separately for the two domains with TOTAL= option to define the domain sizes 𝑁𝑑 in population for finite 
population corrections (fpc). For Scenario 2, fpc was not given and we used the BY statement for the entire 
sample, which invokes separate analyses for the two domains. For Scenario 3, estimates were computed with the 
DOMAIN statement for the entire sample, which accounts for the extra variance via the extended domain 

variables. Equal results Scenario 3 are obtained by the R survey function svyby (Section B.3.4). 

Results for the three scenarios are presented in Table 3.11. The HT estimated CATCH totals are identical in all 
scenarios. The differences are in standard error estimates.  

Table 3.11 Estimation of domain totals of CATCH with three scenarios for SAMPLE2 of 𝑛 = 20  vessels under 
strategy SRSWOR_HT. 

Domain 

𝑑 
Variable 

n 

𝑛𝑑 

Sum of 
Weights 

Total 

𝑡̂𝑑 

Std Dev 

𝑠. 𝑒(𝑡̂𝑑
̂ ) 

95% CL 
Coeff of Var 

𝑐𝑣(𝑡̂𝑑) 

Scenario 1. Conditional approach, known 𝑁𝑑 

0 CATCH 12 60 419536 48298 313232.887 525838.924 0.115122 

1 CATCH 8 40 191067 17114 150598.627 231536.333 0.089572 

Scenario 2. Conditional approach, unknown 𝑁𝑑 

0 CATCH 12 60 419536 53060 302752.639 536319.172 0.126472 

1 CATCH 8 40 191067 19985 143810.041 238324.919 0.104597 

Scenario 3. Unconditional approach 

0 CATCH 12 60 419536 84344 243002.412 596069.399 0.201041 

1 CATCH 8 40 191067 50990 84343.946 297791.014 0.266870 

In Scenario 1, even if a single sample has actually been drawn from the entire population, the domains are treated 
as if a separate sample would have been drawn from each sub-population i.e. domain. The domain sample sizes 
are regarded fixed and domain sizes in population were assumed known, as would be the case for planned 
domains or strata in stratified sampling. In Scenario 2, estimates were computed for the case where population 
domain sizes were unknown, the situation often encountered in domain estimation practice. Obviously, precision 
is weaker relative to Scenario 1, but not substantially. In Scenario 3, domains were treated as unplanned and the 
sample distribution over domains was taken uncontrolled. The observed sample sizes in domains are thus 
regarded as random variates suggesting the unconditional approach for variance estimation. The unconditional 
approach was implemented by using the extended domain variables technique. This approach was the most 
conservative. 

The approach for variance estimation affects the precision of estimates. Standard errors and coefficients of 
variation are larger when accounting for the randomness of the domain sample sizes by the unconditional 
approach, when compared to the conditional approach. The HT estimates for domain totals are additive: their 
sum over the domains equals the HT estimate of the total estimated for the entire population. This property is 
often appreciated in official statistics. HT estimator does not involve auxiliary information. If domain totals are 

known, a Hajék type estimator 𝑡̂𝑑𝐻𝐴 =
𝑁𝑑

𝑁̂𝑑
𝑡̂𝑑𝐻𝑇 that uses 𝑁𝑑 as auxiliary information is often used as an 

alternative (see Section 4.2.4). However, Hajék type estimators are not additive in general but in special cases 
only (Hidiroglou & Patak 2004, Lehtonen & Veijanen 2009 p. 241).  
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Calibration and ratio and regression estimation (Chapter 4) are able to incorporate a variety of auxiliary variables 
and may improve precision over HT and Hajék estimation. Lehtonen & Veijanen (2009) provides a review of 
calibration and generalized regression estimation methods for the estimation of totals for planned and unplanned 
domains, including small domains (with small domain sample size). Variance estimators also are provided. 

3.3.6 Guidelines 

In fisheries statistics, simple random sampling may be selected as the ultimate sampling technique of elements in 
situations where useful auxiliary data are not available. SRS is often used for element sampling from the strata in 
stratified sampling designs. The most common SRS technique for practical purposes is simple random sampling 
without replacement (SRSWOR). SRSWOR is a natural choice, because the unfeasible occasion to draw the same 
unit two or more times in the sample is excluded.  

Efficiency of estimation for simple random samples can be improved in the estimation phase. If aggregate-level 
data are available on an auxiliary variable that correlates with the target variable, ratio or regression estimation 
(Chapter 4) may be possible, assuming that unit-level measurements on the same auxiliary variable are available 
in the sample data set. 

3.4 Systematic sampling 

3.4.1 Background  

Systematic sampling (SYS) is another equal probability sampling design where the inclusion probability is a constant 

for every population element, similarly as in simple random sampling. In a population 𝑈 = {1, … , 𝑘, … , 𝑁} of N 

units, the probability of inclusion in a n element systematic sample is 𝜋𝑘 = 𝜋 = 𝑛/𝑁 for population element 

𝑘 ∈ 𝑈.  

Auxiliary information does not play a role in standard application of systematic sampling. In implicit stratification, 
auxiliary information is sometimes used before sample selection. In this method, the population frame is sorted 
by one or several auxiliary variables that are assumed to correlate with the target variable. It should be noted that 
sorting of the population before systematic sampling can be harmful for the representativeness of the sample, if 
the sampling interval happens to coincide with a harmonic or periodic variation in the ordered population. Then, 
substantial parts of the population may not be represented in a systematic sample. 

3.4.2 Sample selection techniques 

Systematic sampling is a without-replacement type sampling technique. For a systematic sample with one random 

start, the sampling interval 𝑞 = 𝑁/𝑛 is set first. Assuming an integer 𝑞, each qth element is selected in the sample. 

The first element is selected randomly from the 𝑞 first frame elements or by taking a random integer from the 

interval [1, 𝑁] for the first element and selecting the further elements in a closed loop over the entire frame with 

steps of length 𝑞. Statistical software use SYS algorithms with fractional intervals to provide exactly the specified 

sample size 𝑛. 

For a fixed sorting order of the population, the number of different systematic samples with one random start is 

𝑞 i.e. the sampling interval. The selection probability is 𝑝(𝑠) = 1/𝑞 for sample 𝑠 and the inclusion probability of 

element 𝑘 is 𝜋𝑘 = 1/𝑞 = 𝑛/𝑁. 

3.4.3 Estimation of parameters 

In the estimation of population total and mean, formulas for SRSWOR can be used. There is no analytic 
estimator available for the design variance of an estimator of a total under systematic sampling. Therefore, 
approximations for the design variance are used. Assuming that units in the sampling frame are in random order 
relative to the variation of the target variable, the efficiency of systematic sampling is similar to the efficiency of 
simple random sampling without replacement. In this case, variance estimators of SRSWOR are often used in 
practice. 
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3.4.4 Worked example 

Preliminaries. We continue working with the population of active vessels in SIMPOP. Our aim is to estimate 
the CATCH total and associated quality indicators under systematic sampling in the case where no auxiliary data 
are used. The estimation strategy is SYS_HT, where the sample is drawn by systematic sampling and the 
estimation relies on a Horvitz-Thompson estimator. Because inclusion probabilities in SYS are equal for all 
population elements, the weights for HT estimation are constants. The strategy SRSWOR_HT acts as the 
reference strategy 

Estimation. As stated in 3.4.3, the estimation of population total proceeds as for the SRSWOR_HT strategy. 
Because no analytic estimator for the SYS design variance exists, the SRSWOR variance estimator (10) is often 
recommended for situations where the sorting order of the frame population is assumed independent on the 
variation of the target variable.  

Simulation experiment. We want to examine whether it is justified to apply the SRSWOR variance and 
standard error formulas for SYS samples, when the SIMPOP population is sorted into random order. Because 
we need separate samples drawn with both methods, the assessment must be based on a simulation experiment.  
We proceeded as follows.  

 Scenario 1: A random variate RANDOM was generated from uniform (0,1) distribution and assigned to 

SIMPOP. Then, SIMPOP was sorted by RANDOM, and 𝐾 = 100 SYS and SRSWOR samples of 

𝑛 = 5 and 𝑛 = 20  elements were drawn from the sorted population.  

 Scenario 2: SIMPOP was sorted by GT, and 𝐾 = 100 SYS samples of size 5 and 20 elements were 
drawn from the sorted population.  

 For both scenarios, CATCH total, standard error and coefficient of variation were computed by 
SRSWOR formulas for each sample and estimates were averaged over the simulations.  

Estimation results are in Table 3.12.  

Table 3.12 Means of estimated totals, standard errors and coefficients of variation for CATCH from 𝐾 = 100 

simulated SYS and SRSWOR samples of sizes 𝑛 = 5  and 𝑛 = 20  from SIMPOP.  

Obs VarName Replicates 

Averages over simulations 

SumWgt n 
Total 

𝑡̂ 

StdDev 

𝑠. 𝑒(𝑡̂) 

CV 

𝑐𝑣(𝑡̂) 

Sample size n = 5 

Scenario 1: Population in random order 

SYS_HT CATCH 100 100.000000 5 608791 84671 0.137494 

SRSWOR_HT CATCH 100 100.000000 5 633850 88704 0.139704 

Scenario 2: Population sorted by GT 

SYS_HT CATCH 100 100.000000 5 627867 96021 0.152833 

Sample size n = 20 

Scenario 1: Population in random order 

SYS_HT CATCH 100 100.000000 20 624636 43692 0.069728 

SRSWOR_HT CATCH 100 100.000000 20 631258 43574 0.068968 

Scenario 2: Population sorted by GT 

SYS_HT CATCH 100 100.000000 20 624281 44522 0.071634 

Average coefficients of variation of SRSWOR estimates for the SRSWOR and SYS samples are quite close for 
both sample sizes. SRSWOR variance formula seems appropriate when the frame units are in random order. But 
for Scenario 2, where the sorting order of the population elements and the target variable are associated, the 
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SRSWOR variance estimator tends to produce somewhat larger coefficients of variation than in Scenario 1, for 
both sample sizes.  

The results suggest warning against blind use of the SRS variance formulas for systematic samples. In uncertain 
situations it is advisable to examine the relation of the population sorting and the target variable or use 
alternative variance estimators. 

3.4.5 Guidelines 

In fisheries statistics, systematic sampling can be used instead of simple random sampling when appropriate. For 
example, systematic sampling is sometimes used in element sampling from frames that are first sorted by regional 
or related variables in order to have good geographical representation in the sample. If sorting is used, attention 
must be paid to the sorting order of elements in the population frame to avoid possible problems due to 
unfeasible sorting order. 

In variance estimation, methods of simple random sampling can be used for samples drawn from randomly 
ordered sampling frames. In implicit stratification, the standard machinery of stratified sampling (see. Sect. 3.6) 
can be used. Other options are for example pseudo replication methods (jackknife, bootstrap) or the selection of 
replicated systematic samples (e.g. Lehtonen & Pahkinen 2004, Wolter 2007). 

3.5 Sampling with probability proportional to size  

3.5.1 Background  

Sampling with probability proportional to size (PPS sampling) is an unequal probability sampling method, which 
is often used for random sampling in business statistics and elsewhere, where the sizes of sampling units vary 
significantly. If the values of size variable and target variable are closely related, the design variance of the 
estimator of total can be expected to be smaller than in equal probability designs.  

In a population of 𝑁 units, the probability of inclusion in a 𝑛 element PPS sample is 𝜋𝑘 = 𝑛 × 𝑧𝑘/𝑡𝑧, where 𝑧𝑘 

is the value of the size variable 𝑍 for element 𝑘 ∈ 𝑈, 𝑡𝑧/𝑧𝑘 is the relative size of element k and 𝑡𝑧 = ∑ 𝑧𝑘
𝑁
𝑘=1  is 

the known population total of the size variable. Sampling weights are given by 𝑤𝑘 = 1/𝜋𝑘. The sizes 𝑧𝑘 are 

assumed known for each element 𝑘 of the frame. The size variable should be chosen so that its variation 

resembles the variation of the variable of interest 𝑌. The more the ratio 𝑦𝑘/𝑧𝑘 remains constant across the 
population, the more efficient the PPS sampling will be.  

The inclusion probabilities should meet the requirement 𝜋𝑘 ≤ 1 for all k. When the size measure 𝑧𝑘 is 
exceptionally large for one or several elements, it can happen that the inclusion probabilities become greater than 

one for those elements, that is, 𝑛𝑧𝑘/𝑡𝑧 > 1. This situation can be met when working with skewed populations, 
e.g. in business surveys. In practice, separate strata called certainty strata are formed from these elements, and their 

inclusion probabilities are set 𝜋𝑘 = 1 (i.e. they are drawn with certainty; see Lehtonen & Pahkinen 2004, p. 53).  

3.5.2 Sample selection techniques 

Similarly as in simple random sampling, a PPS sample can be drawn with replacement or without replacement. 
Computation of the inclusion probabilities is easier to manage under with-replacement type sampling, because 
the population remains unchanged after each draw. In without-replacement type PPS sampling, the population 
changes after each draw and the inclusion probabilities must be re-calculated for the remaining elements. The 
without-replacement type PPS complicates the estimation of design variances, because the joint (second-order) 

inclusion probabilities 𝜋𝑘𝑙 for the inclusion of both elements k and l in the sample are required. An exception is 

Poisson sampling, where 𝜋𝑘𝑙 = 𝜋𝑘 × 𝜋𝑙, which simplifies computation. This property also holds for PPS 
sampling with replacement. 

Various versions of PPS sampling have been proposed in the literature and are available in computer software 
such as SAS, SPSS and R. Examples are PPSWR and PPSWOR with cumulative total method with replacement or 
without replacement, systematic PPS sampling and Poisson sampling. A popular method in fixed-size without 
replacement type PPS sampling is the Hanurav-Vijayan method (Hanurav 1967, Vijayan 1968).  
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In Poisson sampling, the inclusion probabilities 𝜋𝑘 = 𝑛 × 𝑧𝑘/𝑡𝑧 are first calculated for each population element. 

Independent random numbers 𝜀𝑘 , 𝑘 = 1, … , 𝑁 are then drawn from uniform (0,1) distribution and attached to 

elements 𝑘 in the population. An element 𝑘 is selected to the sample if 𝜀𝑘 < 𝜋𝑘. Similarly as in Bernoulli 

sampling (Section 3.3.2), the size of the resulting sample is random with expected value 𝐸(𝑛𝑠) = ∑ 𝜋𝑘
𝑁
𝑘=1 . In 

conditional Poisson sampling, only samples of size 𝑛 are accepted.  

In fact, most basic sampling techniques are special cases of PPS sampling. For example, by setting the PPS size 

variable values 𝑧𝑘 = 1 for all population elements in PPS_WOR sampling, estimates corresponding to SRSWOR 
sampling would be obtained.  

Chaudhuri & Vos (1988) presents a unified approach for unequal probability sampling and a selection of various 
variants of PPS sampling schemes. Tillé (2006) introduces an inventory of new methods and algorithms for 
unequal probability sampling. 

3.5.3 Estimation of parameters 

Under PPSWOR, Horvitz-Thompson (HT) estimator of population total 𝑡 = ∑ 𝑦𝑘
𝑁
𝑘=1  of target variable Y is of 

the form  (2) given by 

𝑡̂𝐻𝑇 = ∑ 𝑤𝑘𝑦𝑘
𝑛
𝑘=1 = ∑ 𝑦𝑘

𝑛
𝑘=1 /𝜋𝑘, 

where 1/k kw   are PPS sampling weights. Because inclusion probabilities are determined by element-specific 

size variable values, the weights can vary between sample elements.  

A textbook variance estimator of 𝑡̂𝐻𝑇 is:  

𝑣𝑃𝑃𝑆𝑊𝑂𝑅(𝑡̂𝐻𝑇) = ∑ ∑ (𝑤𝑘𝑤𝑙 − 𝑤𝑘𝑙)𝑦𝑘
𝑛
𝑙=1

𝑛
𝑘=1 𝑦𝑙 ,      (11) 

where 𝑤𝑘𝑙 = 1/𝜋𝑘𝑙. An alternative Sen-Yates-Grundy estimator for fixed-size samples is:  

𝑣𝑃𝑃𝑆𝑊𝑂𝑅2(𝑡̂𝐻𝑇) = ∑ ∑ (
𝑤𝑘𝑙

𝑤𝑘𝑤𝑙
− 1) (𝑤𝑘𝑦𝑘 − 𝑤𝑙𝑦𝑙)2𝑛

𝑙=1
𝑙<𝑘

𝑛
𝑘=1 ,    (12) 

which is often preferred in practice. Sampling programs of standard software (SAS, R) are able to compute at 
least approximate joint inclusion probabilities for certain without-replacement type PPS sampling designs for 
not-too-large fixed-size samples. Examples are the basic PPSWOR and the PPS sampling methods of Sampford, 
Midzuno-Sen and Tillé. As an alternative, with-replacement type approximations for PPS variance estimation are 
implemented in some analysis programs. A somewhat conservative variance estimator is: 

𝜈̂𝑃𝑃𝑆𝑊𝑅(𝑡̂𝐻𝑇) =
𝑛(1−𝑓)

𝑛−1
∑ (𝑤𝑘𝑦𝑘 − 𝑡̂𝐻𝑇/𝑛)2𝑛

𝑘=1 ,      (13) 

where 𝑓 = 𝑛/𝑁 is sampling fraction. Estimator (13) assumes with-replacement PPS sampling (Lehtonen and 
Veijanen 2009 p. 227). For example, the SAS procedure SURVEYMEANS uses this variance estimator.  

3.5.4 Worked example 

Preliminaries. Sampling with probability proportional to size, i.e. PPS sampling, represents a traditional 
technique for sampling of elements whose sizes vary in some sense. Examples are samples of schools, 
establishments, regional areas and why not fishing vessels. In the sampling frame of PPS sampling, a continuous 
(or count) type auxiliary variable is required, which measures the size of population element, such as vessel 

tonnage, engine power etc. If the relation of target variable 𝑌 and size measure 𝑍 is strong, then PPS sampling 
may improve efficiency. We discuss PPS for element-level sampling designs.  

We continue working with the population of active vessels. Our target variable is CATCH. We assume that we 
have access to a single auxiliary variable, for example GT (vessel tonnage) whose values are available for all 
population vessels in the sampling frame. The variable GT is promising: by Table 3.4, corr(CATCH,GT) = 0.56. 
GT will serve as the size variable in our PPSWOR sampling exercise. In addition, we will demonstrate PPS 
sampling with another, more powerful, auxiliary variable as the size variable and examine its effect to precision. 

We adopt the estimation strategy PPSWOR_HT, where the sample is drawn from SIMPOP by PPSWOR and 
estimation relies on a Horvitz-Thompson (HT) estimator. We demonstrate the effect of the sample size n to 
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variance, standard error and coefficient of variation estimates of the estimated total of CATCH. We compare the 
results with our reference strategy SRSWOR_HT by computing the design effect estimate.  

Sample selection. Our first sample size drawn by SURVEYSELECT is 𝑛 = 5 active vessels for a 5% sample 
from SIMPOP. The realized sample SAMPLE3 is listed in Table 3.13. In addition to the variables ID, CATCH 
and weight variable SAMPLINGWEIGHT, the values of size variable GT are included. In PPS sampling, 
weights are inverses of the probabilities to be selected in the sample and are vessel specific, values depending on 
the value of GT. Therefore, the values of weights vary. PPS thus is an unequal probability sampling technique. Large 
vessels (measured in GT) get smaller weights than smaller vessels. In other words, probability of selection is 
larger for large vessels and smaller for small vessels. Note also that the sum of weights differ from the population 

size (𝑁 = 100). Sum of weights is sample specific and depends on the goodness of fit of the underlying implicit 

model 𝑦𝑘 = 𝛽𝑥𝑘 + 𝜀𝑘. If the model is approximately correct then the sum of weights will be close to 𝑁. 

Table 3.13 PPSWOR sample SAMPLE3 of 𝑛 = 5  active vessels drawn from SIMPOP of 𝑁 = 100  vessels.  

Obs 

k 
ID 

CATCH 

𝑦𝑘  

GT 

𝑧𝑘 

SamplingWeight 

𝑤𝑘 

1 65 3799.95 329.0 19.9978 

2 89 6845.81 343.2 19.1704 

3 27 6087.56 345.1 19.0649 

4 53 7601.87 376.2 17.4888 

5 94 10615.99 436.8 15.0625 

Sum       90.7843 

Estimation. Let us compute the estimates for CATCH total from SAMPLE3 by using the computational 

formulas of Section 3.5.2 and 3.5.3. By inserting the PPSWOR weights 𝑤𝑘 and sample values of CATCH from 
Table 3.13 into the HT estimator (2) we obtain: 

𝑡̂𝐻𝑇 = ∑ 𝑤𝑘𝑦𝑘 = 6161365
𝑘=1 . 

We estimate the standard error 𝑠. 𝑒(𝑡̂𝐻𝑇) by the square root of an approximate variance estimator (13). The 
estimator is based on the with replacement (WR) assumption and is often used in practice (e.g. SAS procedure 
SURVEYMEANS). This is a conservative estimator, because WR sampling tends to be less effective than WOR 
sampling.  

By inserting the values of weights, CATCH and GT from Table 3.13 into the variance estimator (13) we get: 

𝜈̂𝑃𝑃𝑆𝑊𝑅(𝑡̂𝐻𝑇) =
5×(1−5/100)

5−1
∑ (𝑤𝑘𝑦𝑘 − 616136/5)2𝑛

𝑘=1  = 670552, 

where 𝑠. 𝑒(𝑡̂𝐻𝑇) =  67055. A two-sided 95% confidence interval for the estimated total is computed similarly as 
in Section 3.3.4:  

 Lower confidence limit: 𝐿𝐶𝐿(𝑡̂𝐻𝑇) = 429961  

 Upper confidence limit: 𝑈𝐶𝐿(𝑡̂𝐻𝑇) = 802310.  

The confidence interval is much narrower than for the SRSWOR case. Coefficient of variation (5) for 𝑡̂𝐻𝑇 is 
calculated as: 

𝑐𝑣(𝑡̂𝐻𝑇) =
𝑠.𝑒(𝑡̂𝐻𝑇)

𝑡̂𝐻𝑇
= 0.11. 
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Finally, we compute the design effect estimate (7) of 𝑡̂𝐻𝑇 . SURVEYMEANS does not give deff estimates by 
default and we compute it separately.  

𝑑𝑒𝑓𝑓(𝑡̂𝐻𝑇) =
𝜈̂𝑃𝑃𝑆𝑊𝑅(𝑡̂𝐻𝑇)

𝜈̂𝑆𝑅𝑆𝑊𝑂𝑅(𝑡̂𝐻𝑇)
=

670552

1079522 = 0.39, 

where 𝑡̂𝐻𝑇 variance estimate under the actual PPSWOR design for SAMPLE3 is in the numerator and the 

SRSWOR variance estimate for SAMPLE3 is in the denominator (note that numerical values of 𝑡̂𝐻𝑇 would be 
unequal because of different weighting). The PPSWOR_HT strategy clearly is more efficient than would be the 
SRSWOR_HT strategy for SAMPLE3.  

Estimates are also computed by SURVEYMEANS and are displayed in Table 3.14.  

Table 3.14 Estimated total, standard error and coefficient of variation for variable CATCH from PPSWOR 

sample SAMPLE3 of 𝑛 = 5 vessels.  

Variable 
True 
value 

n Sum of Weights 
Total 

𝑡̂ 

Std Dev 

𝑠. 𝑒(𝑡̂) 
95% CL 

Coeff of Var 

𝑐𝑣(𝑡̂) 

CATCH 624036 5 90.784295 616136 67055 429961.882 802310.945 0.108831 

We next draw a larger sample of size 𝑛 = 20 vessels. Estimates computed by SURVEYMEANS are in Table 
3.15. 

Table 3.15 Estimated total, standard error and coefficient of variation for variable CATCH from PPSWOR 

sample SAMPLE4 of 𝑛 = 20 vessels.  

Variable 
True 
value 

n Sum of Weights 
Total 

𝑡̂ 

Std Dev 

𝑠. 𝑒(𝑡̂) 
95% CL 

Coeff of Var 

𝑐𝑣(𝑡̂) 

CATCH 624036 20 99.434022 664942 40175 580855.134 749027.890 0.060418 

Estimated standard error for total estimate from PPSWOR SAMPLE4 of 𝑛 = 20 vessels is smaller than from 

SAMPLE3 𝑛 = 5 vessels. Coefficient of variation is smaller and confidence interval is narrower than for 
SAMPLE3. Estimation results with a larger PPS sample size are more reliable than for a smaller PPS sample.  

Comparing with a SRSWOR sample of same size 𝑛 = 20, design effect is calculated as: 

𝑑𝑒𝑓𝑓(𝑡̂𝐻𝑇) =
𝜈̂𝑃𝑃𝑆𝑊𝑅(𝑡̂𝐻𝑇)

𝜈̂𝑆𝑅𝑆𝑊𝑂𝑅(𝑡̂𝐻𝑇)
=

 401752

491582 = 0.67. 

It can be shown that that SRSWOR can be considered as a special case of PPSWOR sampling. For example, by 

setting the size variable values 𝑧𝑘 = 1 for all population elements in PPSWOR sampling, we would obtain 
numerically close estimation results as with SRSWOR  

Simulation experiment. Let us demonstrate numerically some theoretical properties of PPSWOR sampling by 
drawing several PPSWOR samples from SIMPOP with GT as size variable and by examining the distribution of 

the estimated totals, se:s and cv:s. We draw 𝐾 = 100 PPSWOR samples of small size 𝑛 = 5 vessels and then 

with larger size 𝑛 = 20 vessels from SIMPOP, compute the estimated total, s.e and cv from each sample. 
Finally, we compute the means of the statistics for the 100 samples.  

Summary results are in Table 3.16. For comparison, we also show estimation results under PPSWOR sampling 
with GT_DAS as size variable. By Table 3.6, CATCH and GT_DAS are more strongly correlated than CATCH 
and GT: corr(CATCH,GT_DAS) = 0.84. We also include the results for SRSWOR sampling from Section 3.3.4.   
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Table 3.16 Means of estimated totals, standard errors and coefficients of variation for CATCH from 𝐾 = 100 

simulated SRSWOR and PPSWOR samples of sizes 𝑛 = 5 and 𝑛 = 20 vessels from SIMPOP.  

Method VarName AuxVar Replicates 

Averages over simulations 

SumWgt n 
Total 

𝑡̂ 

StdDev 

𝑠. 𝑒(𝑡̂) 

CV 

𝑐𝑣(𝑡̂) 

Sample size n = 5 

1. SRSWOR CATCH none 100 100.000000 5 629966 91436 0.145160 

2. PPSWOR CATCH GT 100 98.901065 5 619855 77979 0.127500 

3. PPSWOR CATCH GT_DAS 100 98.622793 5 631954 45627 0.073189 

Sample size n = 20 

4. SRSWOR CATCH none 100 100.000000 20 626895 44061 0.070264 

5. PPSWOR CATCH GT 100 100.168244 20 625331 36331 0.058307 

6. PPSWOR CATCH GT_DAS 100 100.044228 20 624245 22487 0.036093 

True total CATCH     624036   

Both SRSWOR and PPSWOR produce estimated totals that on average are close to the true total, for both 
sample sizes, confirming the design unbiasedness property for HT estimator under the equal-probability 
SRSWOR design and the unequal probability PPS sampling design. For both methods, the average standard 
error and coefficient of variation figures decline when sample size increases, as expected. For both sample sizes, 
coefficients of variation for PPSWOR samples are smaller than cv:s for SRSWOR, so PPS sampling clearly 
improves accuracy. 

Estimation results under PPS with GT_DAS as size variable are most striking. When comparing standard errors 

or cv:s in Table 3.16 rows 3 and 4 we note the following. For PPS sampling with sample size 𝑛 = 5 and 

GT_DAS as size variable, the same precision is obtained as under SRSWOR with sample size 𝑛 = 20 i.e. four 
times larger sample size. It appears very cost effective to use PPS sampling in this case.  

Statistical properties (design bias and accuracy) of PPS sampling and SRSWOR can be examined further by 
displaying the distributions of the estimates for both methods. Graphs  under sample size n = 5 vessels are in 
Figure 3.4. For proper distributions we use K = 1000 simulated samples. A near symmetry of the distribution 
around the mean is beneficial for inference purposes. The mean of the estimates approximates the design 
expectation of the distribution. Design unbiasedness is attained if the mean is close to the true total. The 
variation of the estimates around the mean shows the precision behaviour of the strategy: the more condensed 
around the mean, the more effective strategy. It is clearly seen that both distributions are close to symmetry. 
Both methods indicate design unbiasedness, as expected. The variation of estimates is smaller for PPSWOR than 
for SRSWOR. 
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Figure 3.4. Distributions of total estimates from 𝐾 = 1000 SRSWOR and PPSWOR samples. 

Examination of assumptions on PPS sampling. High correlation of target variable and size variable is good 
for PPS sampling to be effective. The correlation of CATCH and GT is reasonably high (0.56) in the population 
and for SAMPLE4, the correlation is 0.61. But high correlation alone is not enough for proper behaviour of 
PPSWOR. In addition, the ratio of CATCH and GT should be nearly constant over the population.  

 

A: Scatter plot of ID with RATIO in SIMPOP  

 

B: Scatter plot for CATCH with GT in SIMPOP 

 

 

C: Scatter plot of ID with RATIO in SAMPLE4 

 

D: Scatter plot for CATCH with GT in SAMPLE4 

Figure 3.5 Scatter plots of RATIO with ID and CATCH with GT in SIMPOP and SAMPLE4.  

The fitted regression line for the population (Panel B) goes close to the origin. These properties are favourable 

for good performance of PPS sampling. For SAMPLE4 of size 𝑛 = 20, the situation in Panels C and D seems 
to be adequate enough for good performance of PPSWOR sampling in this exercise.  
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3.5.5 Guidelines 

In PPS sampling, the auxiliary information is introduced in the sampling design. Values of the size variable must 
be available for all vessels in the sampling frame. It is important for good efficiency of estimation under PPS 
sampling to choose the size variable so that its variation resembles the variation of the target variable of interest. 

PPS sampling is often used in descriptive surveys, where the focus is in a single important target variable or a few 
mutually correlated target variables, and reliable estimation is required for just these variables. If a powerful size 
variable is available in the sampling frame, the strategy can be optimized for efficient estimation, and PPS can be 
a reasonable choice for good cost-efficiency. 

However, situations can be met in practice where a PPS sampling design is even worse in precision than 
SRSWOR, if the assumptions underlying PPS sampling are not met. It is necessary to examine the assumptions 
in each specific sampling situation, e.g. based on data from possible previous surveys.  

Situations can occur in practice where the set of target variables consists of several diverge variables. A PPS 
sampling design cannot be optimized for all these variables, because a single size variable only can be introduced. 
We study in Chapter 4 how the precision can be improved by using model-assisted methods in the estimation 
phase under a simple sampling design. 

3.6 Stratified sampling 

3.6.1 Background  

In stratified sampling (STR sampling), the population is divided into non-overlapping subpopulations by using one 
or several categorical stratification variables, whose values must be available for all population elements in the 
sampling frame. The subpopulations are called strata and they can be treated as separate populations in the 
sampling and estimation phases. Regional, demographic, socioeconomic, or other appropriate auxiliary 
information can be utilized in the stratification of the population elements, but strata can also be inherent in the 
data. For example, administrative areas can be used to guarantee exhaustive presentation of an entire country. 
Efficiency of estimation can improve relative to SRS sampling, if the strata are internally homogeneous with 
respect to the target variable.  

3.6.2 Allocation and sample selection  

Several sample allocation procedures have been proposed for the STR sampling in the literature, for example 
Lehtonen & Pahkinen (2004) and Lohr (2009). Some commonly used procedures are described briefly. 

Proportional allocation is a reasonable and popular starting point as only the stratum sizes 𝑁ℎ are assumed to 

be known. The sampling fraction 𝑛ℎ 𝑁ℎ⁄ = 𝑛 𝑁⁄  is constant for each stratum h, so that the share of the sample 
for each stratum is 

𝑛ℎ,𝑝𝑟𝑜𝑝 =
𝑁ℎ

𝑁
× 𝑛 = 𝑊ℎ × 𝑛, 

where 𝑊ℎ =
𝑁ℎ

𝑁
 is stratum weight and n is the overall sample size. Sampling fraction 𝑛 𝑁⁄  and therefore the 

inclusion probabilities are constant. Proportional allocation thus leads to an equal probability sampling design. 
This simplifies estimation, but can lead to minor improvements in statistical efficiency when compared with 
more advanced allocation schemes, if stratum variances in population vary greatly. If the strata are internally 
homogeneous with respect to the target variable, proportional allocation can improve precision relative to SRS 
sampling. 

Neyman (optimal) allocation utilizes the stratum standard deviations of the variable of interest. Optimal 

allocation of sample elements to stratum ℎ would then be 

𝑛ℎ,𝑁𝑒𝑦𝑚𝑎𝑛 = 𝑛 ×
𝑁ℎ𝑆ℎ

∑ 𝑁ℎ𝑆ℎ
𝐻
ℎ=1

, 

where 𝑆ℎ is population standard deviation in stratum ℎ. Standard deviations are usually unknown, but they can 
be approximated from earlier studies or other reliable source. Optimal allocation provides the most efficient 
allocation scheme for stratified sampling. This method is often used in repeated business surveys. The allocation 
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formula shows that more units are allocated to a large and internally heterogeneous stratum than for a small and 
homogeneous stratum. Neyman allocation is often used in optimizing the costs, if the unit costs of sampling vary 
in strata and the costs can be approximated. 

Power allocation can be used if there are several small strata and precise estimates at all stratum levels are 
required. In addition to an approximation of the population coefficient of variation of the target variable, a 
known stratum-wise population total of an auxiliary variable can be introduced in the allocation procedure.  

In equal allocation, the same number of elements is drawn from each stratum so that ∑ 𝑛ℎ
𝐻
ℎ=1 = 𝑛, the overall 

sample size. If the strata sizes 𝑁ℎ are unequal then equal allocation produces an unequal sampling design. Equal 
allocation is sometimes used in surveys to obtain a desired precision also for strata whose sizes are small. No 

auxiliary information is needed except the stratum sizes 𝑁ℎ. 

Multivariate allocation methods have been proposed in the literature for the optimization of sample sizes for 
the population subgroups of interest (strata or domains) to attain a pre-specified precision of the estimates in 
multi-purpose sample surveys. In such surveys there are often a number of diverse target variables with a 

different variance 𝑉𝑗, 𝑗 = 1, … , 𝐽. A precision constraint is first set to each of the variables and an allocation 

producing the minimal costs is then selected from the allocations that meet the constraints. Popular methods are 
the ones published by Bethel (1989) and Chromy (1987). Both are iterative methods and the Chromy method is 
often preferred in cases where the number of strata is large, because the convergence is expected to be faster. 
One of the computerized tools is the MAUSS-R software (Buglielli et al. 2013), which is used for the production 
of fisheries statistics in Italy (Section 8.1). Further, Benedetti et al. (2008) proposed an approach that combines 
stratification and sample allocation including the choice of stratifying variables, the number of class intervals for 
each variable, and the optimal Bethel allocation of the sample into the strata. More sophisticated methods are 
needed for skewed populations that are often encountered in environmental and business surveys, see e.g. 
Benedetti et al. (2010). 

3.6.3 Estimation of parameters 

In the estimation phase, the individual strata are considered as independent subpopulations. Stratum-wise 
parameters are estimated by using appropriate sampling weights and summed over the strata for estimates on the 

overall population parameters. A HT estimator for population total 𝑡 = ∑ ∑ 𝑦ℎ𝑘
𝑁ℎ
𝑘=1

𝐻
ℎ=1  thus is: 

𝑡̂𝐻𝑇 = ∑ 𝑡̂ℎ
𝐻
ℎ=1 = ∑ ∑ 𝑤ℎ𝑘𝑦ℎ𝑘

𝑛ℎ
𝑘=1

𝐻
ℎ=1 ,       (14) 

where 𝑡̂ℎ = ∑ 𝑤ℎ𝑘𝑦ℎ𝑘
𝑛ℎ
𝑘=1  is an estimator of the total 𝑡ℎ of stratum ℎ and 𝑤ℎ𝑘 = 1/𝜋ℎ𝑘 is the sampling weight 

for element 𝑘 in stratum ℎ, derived for the entire sample such that ∑ ∑ 𝑤ℎ𝑘
𝑛ℎ
𝑘=1

𝐻
ℎ=1 = 𝑁. For SRS sampling, for 

example, the total is estimated by  

𝑡̂𝑆𝑇𝑅 = ∑ 𝑡̂ℎ =𝐻
ℎ=1 ∑

𝑁ℎ

𝑛ℎ
∑ 𝑦ℎ𝑘

𝑛ℎ
𝑘=1

𝐻
ℎ=1 = ∑ 𝑁ℎ 𝑦̂̅ℎ

𝐻
ℎ=1 ,      (15) 

as the weights are 𝑤ℎ𝑘 =
𝑁ℎ

𝑛ℎ
, ℎ = 1, … , 𝐻.  

Due to the independence assumption, the variance estimator of the overall estimator 𝑡̂𝐻𝑇 is simply the sum of 
stratum variance estimators, given by: 

𝑣𝑆𝑇𝑅(𝑡̂𝐻𝑇) = ∑ 𝜈̂(𝑡̂ℎ)𝐻
ℎ=1 ,        (16) 

where 𝜈̂(𝑡̂ℎ) is variance estimator for 𝑡̂ℎ in stratum ℎ. The stratum variance estimators depend on the element 

sampling technique and the type of the estimator of the total in stratum ℎ. The variance formula indicates that 
variance estimate becomes small and estimation is efficient, if stratum samples are internally homogeneous. 
Allocation also affects the variance of the overall estimators since the stratum size has an effect on the stratum 
variance.  

3.6.4 Worked example 

Preliminaries. In stratified sampling (STR), the population elements are first grouped into non-overlapping 
strata by using a single or multiple auxiliary variables as the stratification variables. Typical stratification variables 
are regional and economic variables and variables describing the properties of population elements, such as type 



34 

 

of industry, turnover and staff size in business surveys. Stratification variables must be available in the sampling 
frame. Stratification is followed by sample allocation into strata using one of the allocation techniques. For the 
selection of a random sample from each stratum, one of the basic sampling techniques, simple random sampling, 
systematic sampling or PPS sampling, is used, the choice of technique depending on the type of the population 
element and the availability of auxiliary data in the sampling frame.  

There are various objectives for stratified sampling in fisheries surveys. By stratification combined with an 
appropriate allocation scheme, it is possible to determine the number of vessels, to be drawn from each stratum 
so that all important parts of the vessel population will be properly represented in the sample. A sufficiently large 
sample size can be allocated for the strata that are of special interest and for rare subgroups to obtain precise 
enough estimation for these subgroups. Indeed, in surveys it is common to define the main subgroups of the 
population as strata for which accurate estimates are required. 

We continue working with the population of active vessels. Stratification is made by the variable STR3. STR3 
was created by dividing the variable GT (vessel tonnage) into three nearly equal-sized classes coded 1, 2 and 3. In 
Section 3.5.4 we used GT as a continuous size variable in PPS sampling. Now we use the same variable as a 
categorical variable for stratification purposes. This gives for us an option to compare the accuracy performance 
of PPS sampling and stratified sampling where basically, the same auxiliary information is used.   

We use estimation strategies STR_SRSWOR_HT and STR_PPSWOR_HT, where the population is first 
stratified into three strata by the variable STR3. Then we fix the total sample size n and select the allocation 
scheme. We apply proportional allocation, where the stratum sample sizes are proportional to the stratum sizes 
in the population. This produces an equal probability sampling design.  

Estimation in both strategies relies on a Horvitz-Thompson (HT) estimator. We demonstrate the effect of the 
sampling design within strata to standard error and coefficient of variation estimates of the estimated total of 
CATCH. We compare the results with our reference strategy SRSWOR_HT by computing the design effect 
estimates. 

Sample selection. By using PROC SURVEYSELECT, we draw from SIMPOP the following stratified samples 

of 𝑛 = 20 active vessels with STR3 as the stratification variable: 

(a) SAMPLE5 by stratified SRSWOR 
(b) SAMPLE6 by stratified PPSWOR with GT_DAS as the size variable.  

We use proportional allocation for both cases. The realized stratified samples SAMPLE5 and SAMPLE6 are 
listed in Table 3.17.  
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Table 3.17 Stratified SRSWOR and PPSWOR samples SAMPLE5 and SAMPLE6 of n = 20 active vessels drawn 
from SIMPOP.  

 (a) Stratified SRSWOR sample 

Obs 

𝑘 
ID STR3 CATCH 

Selection 

Prob 

Sampling 

Weight 

1 1 1 3541.44 0.18182 5.500 

2 22 1 3538.14 0.18182 5.500 

3 23 1 8402.75 0.18182 5.500 

4 25 1 4978.66 0.18182 5.500 

5 42 1 8811.94 0.18182 5.500 

6 44 1 4421.92 0.18182 5.500 

7 12 2 8644.48 0.21212 4.714 

8 15 2 3786.06 0.21212 4.714 

9 30 2 7208.94 0.21212 4.714 

10 36 2 5855.21 0.21212 4.714 

11 46 2 8100.05 0.21212 4.714 

12 52 2 4888.34 0.21212 4.714 

13 75 2 9652.44 0.21212 4.714 

14 55 3 6865.42 0.20588 4.857 

15 57 3 6364.10 0.20588 4.857 

16 67 3 7160.06 0.20588 4.857 

17 82 3 9959.59 0.20588 4.857 

18 90 3 8803.08 0.20588 4.857 

19 91 3 7823.12 0.20588 4.857 

20 94 3 10615.99 0.20588 4.857 

          100.000 
 

(b) Stratified PPSWOR sample 

Obs 

𝑘 
ID STR3 CATCH GT_DAS 

Selection 

Prob 

Sampling 

Weight 

1 44 1 4421.92 46546.5 0.17298 5.7812 

2 41 1 3651.90 52170.0 0.19387 5.1580 

3 35 1 6046.40 53508.0 0.19885 5.0290 

4 11 1 5458.75 56862.0 0.21131 4.7324 

5 38 1 6288.66 64170.0 0.23847 4.1934 

6 37 1 6682.50 67500.0 0.25084 3.9866 

7 20 2 4158.35 38150.0 0.14405 6.9422 

8 48 2 6107.27 48470.4 0.18301 5.4641 

9 80 2 6879.04 61420.0 0.23191 4.3120 

10 12 2 8644.48 68607.0 0.25905 3.8603 

11 69 2 8709.47 75081.6 0.28349 3.5274 

12 56 2 6185.86 78302.0 0.29565 3.3824 

13 50 2 7179.00 83476.8 0.31519 3.1727 

14 58 3 4519.01 57936.0 0.15776 6.3386 

15 79 3 5227.51 68783.0 0.18730 5.3390 

16 43 3 6359.22 71451.9 0.19457 5.1396 

17 61 3 7173.60 85400.0 0.23255 4.3001 

18 57 3 6364.10 87179.4 0.23740 4.2124 

19 91 3 7823.12 101598.9 0.27666 3.6145 

20 81 3 13391.04 103008.0 0.28050 3.5651 

            92.0508 
 

 

Estimation. In stratified sampling, estimation is carried out separately in each subpopulation or stratum, and 
estimates for the entire population are computed as sums of the stratum estimates.  

CASE (a) STR_SRSWOR_HT. We estimate the total of CATCH by (15) and get: 

𝑡̂𝐻𝑇 =  ∑ ∑ 𝑤ℎ𝑘𝑦ℎ𝑘
𝑛ℎ
𝑘=1

3
ℎ=1 =  691976, 

where 𝑛ℎ is the number of sample vessels in stratum ℎ and 𝑤ℎ𝑘 is the weight for element k in stratum ℎ in Table 

3.17 Part (a). For computing variance estimate of 𝑡̂𝐻𝑇 by (16) we compute the stratum-wise variance estimates 
using the SRSWOR variance estimator: 
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𝜈̂𝑆𝑇𝑅(𝑡̂ℎ) = 𝑁ℎ
2 (1 −

𝑛ℎ

𝑁ℎ
)

𝑠̂ℎ
2

𝑛ℎ
, 𝐻 = 1, … , ℎ, 

where 𝑠̂ℎ
2 is the sample variance of target variable in stratum h. Estimated stratum totals and variances are in 

Table 3.18.  

Table 3.18 Stratum estimates for SAMPLE5.  

Stratum 

h 
Variable n 

Total 

𝑡̂ℎ 

Var of Total 

𝜈̂ℎ 

1 CATCH 6 185322 844469990 

2 CATCH 7 226925 551281589 

3 CATCH 7 279729 342431431 

Sum  20 691976 1738183010 

 

The overall variance estimate (16) for 𝑡̂𝐻𝑇 is obtained by summing up the stratum-wise variance estimates: 

𝜈̂𝑆𝑇𝑅_𝑆𝑅𝑆𝑊𝑂𝑅(𝑡̂𝐻𝑇) =  ∑ 𝜈̂𝑆𝑇𝑅(𝑡̂ℎ) =3
ℎ=1 1738183010 = 416922, 

and 𝑠. 𝑒(𝑡̂𝐻𝑇) = 41692. Variance formula shows that having internally homogeneous strata is beneficial for 
improved precision.  

Coefficient of variation (5) is calculated as: 

𝑐𝑣(𝑡̂𝐻𝑇) =
𝑠.𝑒(𝑡̂𝐻𝑇)

𝑡̂𝐻𝑇
=

41692

691976
= 0.060. 

Design effect estimate (7) is computed as: 

𝑑𝑒𝑓𝑓(𝑡̂𝐻𝑇) =
𝜈̂𝑆𝑇𝑅_𝑆𝑅𝑆𝑊𝑂𝑅(𝑡̂𝐻𝑇)

𝜈̂𝑆𝑅𝑆𝑊𝑂𝑅(𝑡̂𝐻𝑇)
=

 416922

443002 = 0.88. 

Coefficient of variation is quite small. The deff estimate indicates that stratification improves precision to some 
extent when compared to estimates obtained by assuming SAMPLE5 as a SRSWOR sample without 
stratification. 

CASE (b) STR_PPSWOR_HT. We estimate the total of CATCH by the same formula as in (a) but with 
different weights that are taken from Table 3.17 Part (b): 

𝑡̂𝐻𝑇 =  ∑ ∑ 𝑤ℎ𝑘𝑦ℎ𝑘
𝑛ℎ
𝑘=1

3
ℎ=1 =  576254. 

Estimated total computed from SAMPLE6 happens to be much smaller than the estimate computed using the 

stratified SRSWOR sample. For computing variance estimates of stratum totals 𝑡̂ℎ we use the PPSWR variance 
estimator (13): 

𝜈̂𝑆𝑇𝑅(𝑡̂ℎ) =
𝑛ℎ(1−𝑓ℎ)

𝑛ℎ−1
∑ (𝑤ℎ𝑘𝑦ℎ𝑘 − 𝑡̂ℎ/𝑛ℎ)2𝑛ℎ

𝑘=1 . 

For the overall variance estimate (16) we obtain: 

𝜈̂𝑆𝑇𝑅_𝑃𝑃𝑆𝑊𝑅(𝑡̂𝐻𝑇) =  ∑ 𝜈̂ℎ
3
ℎ=1 = 222822, 

and 𝑠. 𝑒(𝑡̂𝐻𝑇) = 22282.  Coefficient of variation (5) is calculated as: 

𝑐𝑣(𝑡̂𝐻𝑇) =
𝑠.𝑒(𝑡̂𝐻𝑇)

𝑡̂𝐻𝑇
=

22282

576254
= 0.039. 
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Design effect estimate (7) is computed as: 

𝑑𝑒𝑓𝑓(𝑡̂𝐻𝑇) =
𝜈̂𝑆𝑇𝑅_𝑃𝑃𝑆𝑊𝑅(𝑡̂𝐻𝑇)

𝜈̂𝑆𝑅𝑆𝑊𝑂𝑅(𝑡̂𝐻𝑇)
=

 222822

422552 = 0.28, 

indicating that the strategy STR_PPSWOR_HT is very efficient in this case and would improve estimation 
substantially when compared to a strategy SRSWOR_HT. 

Estimation results for strategies (a) and (b) with PROC SURVEYMEANS are in Table 3.19. It can be observed 
that stratification and HT estimation in connection with PPSWOR sampling turns out to be substantially more 
efficient than stratification by HT estimation under SRSWOR, with the same stratification variable STR3 and 
proportional allocation in both cases. 

Table 3.19 Estimated totals, standard errors and coefficients of variation for variable CATCH from (a) stratified 

SRSWOR sample SAMPLE5 and (b) stratified PPSWOR sample SAMPLE6 of 𝑛 = 20 vessels.  

Method Variable n 
Sum of  

Weights 

Total 

𝑡̂ 

Std Dev 

𝑠. 𝑒(𝑡̂) 
95% CL  

Coeff of Var 

𝑐𝑣(𝑡̂) 

(a) STR_SRSWOR CATCH 20 100.000000 691976 41692 604014.144 779936.990 0.060250 

(b) STR_PPSWOR CATCH 20 92.050773 576254 22282 529243.006 623265.260 0.038667 

True total CATCH   624036     

Both stratified samples seem somewhat extreme because the estimated totals are far from the true total. 
Estimated total is much larger than true value for the STR_SRSWOR_HT strategy and much smaller for the 
STR_PPSWOR_HT strategy. It would be useful to examine closer the distributions of the HT estimates and 
their standard errors empirically for example by simulation experiments.  

3.6.5 Guidelines 

In fishery surveys, stratification of the population before sample selection is recommended for situations where 
sufficiently large sample sizes are required for the most important subgroups of the population for attaining a 
desired precision level for the estimates. In these situations, a non-proportional allocation scheme is often 
chosen, leading to an unequal probability type STR sampling design. Stratified sampling alone does not 
necessarily improve precision substantially. For improved precision, additional auxiliary information may be 
introduced in the sampling and estimation designs, such as PPS sampling of elements within the strata or 
regression estimation for the overall sample or separately in each stratum.  

Additional auxiliary information can also be introduced in the allocation scheme, by using optimal (Neyman) 
allocation, which requires good approximations for the (unknown) stratum standard deviations of the target 
variable, or power allocation, where good approximations of the stratum-wise CV:s of the target variable are 
needed, in addition to known stratum totals of an auxiliary variable.  

Stratification with SRS, systematic sampling or PPS sampling supplemented with a simple allocation scheme 
provides often a manageable sampling design for a fisheries survey. When feasible, it is advisable to consider the 
options for improving accuracy of estimates in the estimation phase. Model-assisted and calibration methods 
provide flexible methods this purpose. 

It is recommended that the availability of suitable stratification variables in different administrative registers and 
related data sources are examined. If possible, these variables should be included in the sampling frame before 
sampling operations.  



38 

 

4 Model-assisted estimation and related methods 

4.1 Estimation designs 
The previous sections were devoted to sampling methods with special emphasis on the use of auxiliary 
information in the sampling design. In this chapter, we extend the discussion to estimation methods that use 
auxiliary information in the estimation design. These methods are applied in the analysis of the collected sample 
data set. There are many good reasons for the use of auxiliary information in the estimation phase. A typical 
descriptive survey can involve a variety of different target variables of interest. Because it is not possible to 
optimize the sampling design for all these variables, a compromise sampling design is often implemented. The 
compromise sampling design with the HT estimation strategy does not necessarily produce precise estimation for 
all variables of interest. Therefore, an estimation design is often adopted that guarantees the desired precision for 
population estimates and also for estimates for the important population subgroups.  

For example, an equal probability sampling design can be applied for element sampling, possibly amended with 
stratification and non-proportional allocation. After sample selection, an estimation design is implemented that 
incorporates aggregate-level or unit-level auxiliary information and statistical modeling. Strategies of this type do 
not rely on the HT estimation but on more flexible design-based model-assisted methods and calibration estimation.  

The framework of model-assisted methods comprises simple linear fixed-effects models up to more complex 
generalized linear mixed models, the model choice depending on the given statistical data infrastructure and the 
complexity of the estimation problem at hand, as well as the preferred statistical framework. This chapter covers 
the traditional model-assisted methods ratio estimation, regression estimation and post-stratification. Each of these 
methods involves an explicit model statement, based on a standard linear models framework for continuous 
target variables. 

Examples of particular models underlying the traditional model-assisted estimators for population totals and 
means are: 

a) Regression models of the form 𝑦𝑘 = 𝛽0 + 𝛽1𝑥1𝑘 + 𝛽2𝑥2𝑘 + ⋯ + 𝛽𝑝𝑥𝑝𝑘 + 𝜀𝑘, where the covariates 

(auxiliary) variables are considered continuous, e.g. vessel tonnage GT, days at sea DAS, etc. These 

models act as assisting models in ratio and regression estimation. The estimated 𝛽-parameters and the 
auxiliary variables are used in the construction of a ratio or regression estimator. 

b)  ANOVA (Analysis of variance) models, where the explanatory variables are categorical, e.g. variable 
STR3 with three classes. These models are typical in post-stratification. Technically, models with 
categorical explanatory variables can be formulated as regression models if desired, with class 
membership indicator variables as the explanatory variables. 

In the framework of generalized regression (GREG) estimation, the entire family of linear and generalized linear 
models can be applied. For example, linear ANCOVA (Analysis of covariance) models involving both 
continuous and categorical explanatory variables and their interaction terms can be implemented in a generalized 
regression estimator, and logistic models for a binary target variable (e.g. ACTIVITY) and a set of continuous 
and categorical explanatory variables can be incorporated in a logistic GREG estimator.  

An important property of model-assisted methods is that estimators for totals discussed here remain (nearly) 
design unbiased irrespective of the correctness of the assisting model. The model affects efficiency: with a 
powerful model, precision will decline relative to HT estimation. A thorough presentation of model-assisted 
methods is in Särndal, Swensson and Wretman (1992). 

In model-assisted estimation, the auxiliary data are incorporated in the estimation procedure by models. A model-
free statistical framework is sometimes preferred leading to model-free calibration techniques. The approach was 
introduced in Deville and Särndal (1992). In model-free calibration (Särndal 2007), an explicit model statement is 
not required but the auxiliary information is incorporated in the estimation procedure via a weight variable. The 
methodology is often called re-weighting, since the original sampling weights are adjusted appropriately for new 
calibrated weights. The calibrated weights must satisfy certain conditions. By applying the calibrated weights to 
an auxiliary variable , the weighted sum of sample observations of the auxiliary variable must coincide with the 
known population total of the variable. The so-called calibration equation states:  

∑ 𝑤𝐶𝐴𝐿,𝑘𝑥𝑘 =𝑛
𝑘=1 ∑ 𝑥𝑘

𝑁
𝑘=1 =  𝑡𝑥,        (17) 
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where 𝑤𝐶𝐴𝐿,𝑘 is the new calibrated weight and 𝑥𝑘 is the value of the auxiliary variable for element 𝑘. The known 

population total 𝑡𝑥 of the auxiliary variable is the sole auxiliary information needed for calibration estimation of 
total for a target variable. The traditional model-assisted methods considered here also fulfil the calibration 
equation (17) and thus, they can be expressed as calibration estimators. 

In calibration estimation, efficiency is expected to improve over HT estimation if the target variable correlates 
with the auxiliary variable. This can be seen by inspecting a simple variance approximation of a calibration 

estimator of a total. The calibration estimator for total is 𝑡̂𝐶𝐴𝐿 = ∑ 𝑤𝐶𝐴𝐿,𝑘𝑦𝑘
𝑛
𝑘=1  and a simple estimator of the 

approximate design variance is  

𝜈̂(𝑡̂𝐶𝐴𝐿) = 𝜈̂(𝑡̂𝐻𝑇) × (1 − 𝑐𝑜𝑟𝑟𝑦𝑥
2 ).        (18) 

Obviously, efficiency improves over HT estimation as soon as the correlation 𝑐𝑜𝑟𝑟𝑦𝑥 between variables 𝑌 and 𝑋 

is nonzero. The same property holds for the model-assisted estimators. 

The main aim of Chapter 4 is to target how and to what extent the precision can be improved over the 
SRSWOR_HT strategy by making use of model-assisted methods as well as calibration methods under a simple 
random sampling SRSWOR design. These methods offer much flexibility when compared to strategies such as 
PPSWOR_HT, where a single auxiliary variable is applied. In stratified sampling and PPS sampling, the auxiliary 
data are needed at the unit level in the sampling frame, whereas in the traditional model-assisted methods, 
auxiliary data are needed at aggregate level, and unit-level values are only needed for the sample. Moreover, 
multiple auxiliary variables can be imposed in the assisting model, e.g. a regression model, offering an option to 
tailor the estimation design separately for each important target variable.  

Basic estimation designs, target variable types, auxiliary variable requirements and assisting model types are 
summarized in Table 4.1. We concentrate in this chapter on the classical model-free calibration method (c) and 
the traditional model-assisted ratio and regression estimation and post-stratification methods (d), (e) and (f). 

Table 4.1 Basic design-based estimation designs. 

Estimation design Target variable types 
Auxiliary data 

requirements 
Assisting models 

(1) Traditional model-free estimation 

(a) Horvitz-Thompson type 

(HT) 

Continuous, binary, 

count 

None 

None 
(b) Hajék type (HA) Population or 

domain size  

(c) Model-free calibration 

(CAL) 

Aggregate or 

domain level 

(2) Traditional model-assisted estimation 

(d) Regression estimation 

(REG) 

Continuous 
Aggregate or 

domain level  

Linear fixed-effects regression 

model 

(e) Ratio estimation (RAT) Linear fixed-effects regression 

model (no intercept) 

(f) Post-stratification 

(POST) 

ANOVA type linear fixed-

effects model 

(3) Generalized regression (GREG) estimation and model-assisted calibration (MC) 

(g) GREG family & MC 

family 

Continuous, binary, 

count, categorical 

Unit-level  Members of generalized linear 

models (GLM) family 
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4.2 Ratio and regression estimation and calibration 

4.2.1 Background 

In ratio and regression estimation, the auxiliary information is incorporated into the estimation procedure by 
using linear regression models with continuous target variable and a single continuous covariate (ratio estimation) 
or several covariates (regression estimation). For a ratio or regression estimator, the known population totals of 
the auxiliary variables are required, and the unit-level values are needed for the sample elements. If desired, the 
methods can be expressed in the form of calibration estimators. In this section we discuss ratio and regression 
estimation and calibration weighting. Post-stratification is treated in Section 4.3. 

4.2.2 Sampling and estimation 

Model-assisted and calibration methods are applicable under any sampling design, but a relatively simple 
sampling design is often adopted, and efforts for precision improvement are devoted to the estimation phase. 
We introduce the basic methods for the estimation of the population total and the derivation of the appropriate 
variance, standard error and coefficient of variation estimates within the worked example section of each 
method. In all strategies considered, the underlying sampling design is simple random sampling without 
replacement. 

4.2.3 Worked example 

Preliminaries. We continue working with the set of active vessels in SIMPOP. Our target variable is again 
CATCH. This selection allows us to compare the performance of the methods with methods that use (or, not 
use) auxiliary data in the sampling phase. We assume that we have access to data on continuous type auxiliary 
variables GT (vessel tonnage) and DAS (days at sea) and the binary variable DOM01 (type of fishing).  

We study the estimation strategies SRSWOR_CAL, SRSWOR_RAT and SRSWOR_REG, where the sample is 
drawn from SIMPOP by SRSWOR and estimation relies on a ratio estimator or a regression estimator. The 
strategy SRSWOR_HT serves as a reference strategy. We compare the results with the reference strategy by 
computing standard error, coefficient of variation and design effect estimates. Different sample sizes are applied.  

Sample selection. We use SRSWOR as the sampling design. Sample realizations are named SAMPLE7 and 
SAMPLE8, corresponding the SRSWOR samples SAMPLE1 and SAMPLE2 in Section 3.3.4. Both new samples 

are amended with the selected auxiliary variables. Our first sample of size 𝑛 = 5 active vessels from SIMPOP is 
displayed in Table 4.2.  

Table 4.2 SRSWOR sample SAMPLE7 of 𝑛 = 5 active vessels drawn from SIMPOP of N = 100 vessels 
amended with sample values of auxiliary variables GT, DAS and DOM01.  

Obs 

k 
ID 

CATCH 

𝑦𝑘  

GT 

𝑥1𝑘 

DAS 

𝑥2𝑘 

DOM01 

𝑥3𝑘 

Sampling 

Weight 

𝑤𝑘 

1 1 3541.44 280.0 136 0 20 

2 44 4421.92 282.1 165 1 20 

3 49 11355.97 386.1 228 0 20 

4 55 6865.42 408.0 213 0 20 

5 93 9942.19 440.7 235 1 20 

Sum            100 

The selected auxiliary variables are 𝑥1  (variable GT), 𝑥2 (variable DAS) and 𝑥3 (binary variable DOM01). We 
assume that we have the population totals of these variables at our disposal. The totals are given in Table 4.3.  
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Table 4.3 Population totals of the auxiliary variables. 

Obs GT 

𝑡𝑥1
 

DAS 

𝑡𝑥2
 

DOM01 

𝑡𝑥3
 

1 32896.4 18308 30 

We need the population totals 𝑡𝑥1
, 𝑡𝑥2

 and 𝑡𝑥3
 of the auxiliary variables for the construction of the various 

calibration, ratio and regression estimators.  

Calibration estimation. In calibration estimation for the total of a target variable, we do not need to postulate 
any underlying model. The calibration weights are obtained by computational operations directly on the target 
and auxiliary variables.  

We examine calibration estimation applied to ratio estimation for the total of CATCH. Let us take GT (vessel 
tonnage) as the auxiliary variable. The sample is SAMPLE7. Building blocks for ratio estimation of CATCH total 
are collected in Table 4.4. 

Table 4.4. Components needed for the construction of a calibration estimator for CATCH total. 

Variable Source Component 

CATCH sample 𝑡̂𝐻𝑇 = 722539 

GT sample 𝑡̂𝐻𝑇𝑥1
= 35938 

GT population 𝑡𝑥1
= 32896.44 

The estimation of the total can be executed by model-free calibration using the so-called 𝑔 weights. We 
construct calibration weights as a product of sampling weight and g weight: 

𝑤𝐶𝐴𝐿,𝑘 = 𝑤𝑘 × 𝑔𝑘 =  𝑤𝑘 ×
𝑡𝑥1

𝑡̂𝐻𝑇𝑥1

= 20 × 0.91537 = 18.3073 ,  

where the 𝑔 weights are computed as 

𝑔𝑘 =  
𝑡𝑥1

𝑡̂𝐻𝑇𝑥1

=
32896.44

35938
=  0.91537  

i.e. constant for all sample elements, and the sampling weights are 𝑤𝑘 = 1/𝜋𝑘 = 20. First, we check the 
calibration property (17) by computing the calibrated total of the auxiliary variable GT and obtain 

∑ 𝑤𝑘𝑔𝑘𝑥𝑘 =𝑛
𝑘=1 ∑ 𝑥𝑘 =𝑁

𝑘=1 𝑡𝑥1
= 32896.44, see Table 4.4. The calibration property thus holds. 

Using calibration, the ratio estimate of the total of CATCH with GT as the auxiliary variable is computed as 

𝑡̂𝐶𝐴𝐿 = ∑ 𝑤𝐶𝐴𝐿,𝑘𝑦𝑘 =5
𝑘=1 18.3073 × 36126.94 = 661387. 

For illustration, the components for calculating the ratio estimate with calibration are inserted in Table 4.5. The 

sum of the components over the sample produces the ratio estimate. We discuss variance estimate for 𝑡̂𝐶𝐴𝐿 
below in connection to ratio estimation. 
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Table 4.5 SRSWOR sample SAMPLE7 of 𝑛 = 5 active vessels drawn from SIMPOP of 𝑁 = 100 vessels 

amended with 𝑔 weights, calibration weights and components for calibration estimation.  

Obs 

k 
ID 

CATCH 

𝑦𝑘  

GT 

𝑥1𝑘 

g Weight 

𝑔𝑘 

Sampling 

Weight 

𝑤𝑘 

Calibration 

Weight 

𝑤𝐶𝐴𝐿,𝑘 

Components 

𝑤𝐶𝐴𝐿,𝑘 × 𝑦𝑘  

1 1 3541.44 280.0 0.91537 20 18.3073 64834.23 

2 44 4421.92 282.1 0.91537 20 18.3073 80953.40 

3 49 11355.97 386.1 0.91537 20 18.3073 207897.29 

4 55 6865.42 408.0 0.91537 20 18.3073 125687.28 

5 93 9942.19 440.7 0.91537 20 18.3073 182014.76 

Sum    36126.94     100 91.5365 661387 

Ratio estimation. Ratio estimator 𝑡̂𝑅𝐴𝑇 of population total 𝑡 = ∑ 𝑦𝑘  𝑁
𝑘=1  of the target variable is traditionally 

constructed as 

𝑡̂𝑅𝐴𝑇 = 𝑡̂𝐻𝑇 ×
𝑡𝑥

𝑡̂𝐻𝑇𝑥
,         (19)  

where 𝑡̂𝐻𝑇 = ∑ 𝑤𝑘𝑦𝑘  𝑛
𝑘=1  is the HT estimator of the total of the target variable, 𝑡𝑥 is the known population total 

and 𝑡̂𝐻𝑇𝑥 = ∑ 𝑤𝑘𝑥𝑘 𝑛
𝑘=1  is the HT estimator of the auxiliary variable, and 𝑤𝑘 = 1/𝜋𝑘 are the sampling weights. 

It is important to note that for ratio estimation we only need the population total of the auxiliary variable. Unit-
level values of the auxiliary variable are only needed for the sample.  

We use GT (vessel tonnage) as the auxiliary variable 𝑥1 for ratio estimation of the total of CATCH. Building 
blocks for ratio estimation are again taken from Table 4.4. Ratio estimate for the total of CATCH is computed 
as: 

𝑡̂𝑅𝐴𝑇 = 𝑡̂𝐻𝑇 ×
𝑡𝑥1

𝑡̂𝐻𝑇𝑥1

= 722539 ×
32896.4

35938
= 722539 × 0.91537 = 661387 ,  

i.e. the same estimate as was obtained with calibration estimation.  

We discuss briefly ratio estimation as a model-assisted estimation method. In ratio estimation,  the assisting 
model is simple. The regression model is given by 

𝑦𝑘 = 𝛽1𝑥1𝑘 + 𝜀𝑘, 

where the slope parameter 𝛽1 for the auxiliary variable is the sole parameter to be estimated, and 𝜀𝑘 stands for 
residuals. Note that the model does not involve an intercept term; it is assumed that the regression line goes 
through the origin (recall a similar assumption in PPS sampling).  

Ratio estimation can be proceeded as a special case of regression estimation by fitting the linear model 𝑦𝑘 =
𝛽1𝑥1𝑘 + 𝜀𝑘 and computing the ratio estimate by using the estimated 𝛽-parameter and the known population 

total of GT. In practice, the 𝛽-parameter is estimated by weighted least squares using sampling weights. For the 

current SRS case we obtain a slope estimate 𝛽̂1 =
𝑡̂𝐻𝑇

𝑡̂𝐻𝑇𝑥1

= 20.1051  that is equal to the estimated ratio 𝑟̂. The 

ratio estimate of the total is now computed as  

𝑡̂𝑅𝐴𝑇 = 𝑡𝑥1
× 𝛽̂1 = 32896.44 × 20.1051 = 661387,  

that is, numerically the same estimate as the previous ones. 
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Variance estimation. Variance estimation for the ratio estimator 𝑡̂𝑅𝐴𝑇 can be carried out first by presenting the 
ratio estimator in the form  

𝑡̂𝑅𝐴𝑇 = 𝑡𝑥1

𝑡̂𝐻𝑇

𝑡̂𝐻𝑇𝑥1

=  𝑡𝑥1
× 𝑟̂,  

where 𝑟̂ =
𝑡̂𝐻𝑇

𝑡̂𝐻𝑇𝑥1

, and writing the design variance as 

𝑉(𝑡̂𝑅𝐴𝑇) = 𝑉(𝑡𝑥1
𝑟̂) = 𝑡𝑥1

2 × 𝑉(𝑟̂).        (20) 

Various approximate estimators 𝑣(𝑟̂) for the nonlinear estimator 𝑟̂ of the ratio of two HT estimated totals and 

𝜈̂(𝑡̂𝑅𝐴𝑇) for the total 𝑡̂𝑅𝐴𝑇 are available in the literature, e.g. Cochran (1963), Särndal et al. (1992), Lehtonen & 
Veijanen (2009), as well as in software documentation (e.g. SAS procedures SURVEYMEANS and 

SURVEYREG and R survey function calibrate). In addition to the linearization method, 
pseudoreplication methods are available by the software products, e.g. SAS SURVEY procedures. The methods 

include the jackknife technique and balanced half-samples method. Variance estimators 𝑣(𝑟̂) for 𝑟̂ in eq. (20) are 

implemented for example in the SAS procedure SURVEYMEANS. If the population total 𝑡𝑥1
 of the auxiliary 

variable is available, it is straightforward to compute an estimate 𝜈̂(𝑡̂𝑅𝐴𝑇).  

Many of the approximate variance estimators methods for ratio estimator as well as regression and calibration 
estimators rely on the estimation of residual variance, where residuals are computed under the fitted model as 

𝑒𝑘 = 𝑦𝑘 − 𝑦̂𝑘 . This approach is used for example in the SAS procedure SURVEYREG, For a ratio estimator 

the fitted values are 𝑦̂𝑘 = 𝛽̂1𝑥1𝑘. 

A simple variance estimator for 𝑡̂𝑅𝐴𝑇 based on a residual variance estimator is given by 

𝜈̂1(𝑡̂𝑅𝐴𝑇) =
𝑛(1−𝑓)

𝑛−1
(

𝑛−1

𝑛−𝑝
) ∑ (𝑤𝑘𝑒𝑘 − 𝑡̂𝐻𝑇𝑒/𝑛)2𝑛

𝑘=1 ,     (21) 

where 𝑡̂𝐻𝑇𝑒 = ∑ 𝑤𝑘𝑒𝑘
𝑛
𝑘=1  is the HT estimator of residual total, 𝑒𝑘 = 𝑦𝑘 − 𝑦̂𝑘 are residuals with fitted values 

𝑦̂𝑘 = 𝛽̂1𝑥1𝑘 from the model, 𝛽̂1 = 𝑟̂ =
𝑡̂𝐻𝑇

𝑡̂𝐻𝑇𝑥1
 is the estimated slope term, 𝑓 =

𝑛

𝑁
 is the sampling fraction and p is 

the number of model parameters. A 𝑔 weighted version is often preferred, given by 

𝜈̂2(𝑡̂𝑅𝐴𝑇) =
𝑛(1−𝑓)

𝑛−1
(

𝑛−1

𝑛−𝑝
) ∑ (𝑤𝑘𝑔𝑘𝑒𝑘 − 𝑡̂𝐶𝐴𝐿𝑒/𝑛)2𝑛

𝑘=1 ,     (22) 

where 𝑔𝑘 =
𝑡𝑥1

𝑡̂𝐻𝑇𝑥1

 are g weights and 𝑡̂𝐶𝐴𝐿𝑒 = ∑ 𝑤𝑘𝑔𝑘𝑒𝑘
𝑛
𝑘=1  is the 𝑔-weighted residual total estimate. This type 

of variance estimator is used for example in the SAS procedure SURVEYREG. Variance estimators (21) and (22) 

are asymptotically equivalent, because the 𝑔 weights tend to unity with increasing the sample size. 

Variance estimator 𝜈̂3(𝑡̂𝑅𝐴𝑇) for 𝑡̂𝑅𝐴𝑇 resembling the standard variance estimator for a ratio estimator of total 
(e.g. Lehtonen & Pahkinen 2004 p. 98) is often used in practice and is given by  

𝜈̂3(𝑡̂𝑅𝐴𝑇) =
𝑛(1−𝑓)

𝑛−1
∑ (𝑤𝑘𝑔𝑘𝑦𝑘 − 𝑤𝑘𝑔𝑘𝑟̂𝑥1𝑘)2𝑛

𝑘=1 ,     (23) 

where 𝑟̂ =
𝑡̂𝐻𝑇

𝑡̂𝐻𝑇𝑥1

. The estimator also uses the g weights. The SAS procedure SURVEYMEANS (RATIO 

statement) does not compute (23) directly but computes an estimate for the ratio 𝑟̂ given by 

𝜈̂3(𝑟̂) = 1/𝑡𝑥1
2 × 𝜈̂3(𝑡̂𝑅𝐴𝑇).  

We obtain: 

𝜈̂3(𝑡̂𝑅𝐴𝑇) = 𝑡𝑥1
2 × 𝜈̂3(𝑟̂) = 32896.442 × 8.01513 = 931332.  

Numerical results from equations (21) and (22) do not differ much from an estimate using the variance estimator 
(23). 

With a powerful auxiliary variable, variance estimates 𝜈̂(𝑡̂𝑅𝐴𝑇) can be substantially smaller than a HT variance 

estimate 𝜈̂(𝑡̂𝐻𝑇), because the variation between residuals will be smaller when compared with the variation of the 
original values of target variable.  
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To complete, we compute variance estimate 𝜈̂3(𝑟̂) and standard error estimate 𝑠. 𝑒(𝑟̂) by using the 

SURVEYMEANS procedure. Results are in Table 4.6. The estimate 𝑠𝑒(𝑡̂𝑅𝐴𝑇) also is included. The results (see 

also Section A:6) agree with results computed with the R survey function calibrate (Section B.7.2).  

Table 4.6 Estimation of the ratio 𝑟̂ for the SRSWOR sample SAMPLE7 of 𝑛 = 5 elements computed with 

PROC SURVEYMEANS, amended with results for the ratio estimate 𝑡̂𝑅𝐴𝑇. 

Ratio Analysis 

Numerator Denominator Ratio 

𝑟̂ 

Std Err 

𝑠. 𝑒(𝑟̂) 

Total 

𝑡̂𝑅𝐴𝑇  

StdErr 

𝑠𝑒(𝑡̂𝑅𝐴𝑇) 

CATCH GT 20.105147 2.831090 661387 93133 

Coefficient of variation (5) for 𝑡̂𝑅𝐴𝑇 is calculated as: 

𝑐𝑣(𝑡̂𝑅𝐴𝑇) =
𝑠.𝑒(𝑡̂𝑅𝐴𝑇)

𝑡̂𝑅𝐴𝑇
=

93133

661387
= 0.14.  

Design effect estimate (7) of 𝑡̂𝑅𝐴𝑇   is:  

𝑑𝑒𝑓𝑓(𝑡̂𝑅𝐴𝑇) =
𝜈̂𝑆𝑅𝑆𝑊𝑂𝑅(𝑡̂𝑅𝐴𝑇)

𝜈̂𝑆𝑅𝑆𝑊𝑂𝑅(𝑡̂𝐻𝑇)
=

931332

1478232 = 0.40. 

It should be recognized that in the deff formula, the estimators for the total in the numerator and denominator 

are different. The SRSWOR variance estimator in the numerator is for the ratio estimator 𝑡̂𝑅𝐴𝑇 and in the 

denominator, it is for the HT estimator 𝑡̂𝐻𝑇. Because the deff estimate is smaller than one, the SRSWOR_RAT 
strategy is more efficient than would be a SRSWOR_HT strategy for SAMPLE7.  

We finally execute ratio estimation by the SAS procedure SURVEYREG, which is aimed to design-based 

regression modeling. The model 𝑦𝑘 = 𝛽1𝑥1𝑘 + 𝜀𝑘 is first fitted for the sample data set and the ratio estimate is 
obtained by the ESTIMATE statement. Results are in Table 4.7. The sample is the one displayed in Table 4.2. The 
results agree pretty closely with the previous ones. Differences to Table 4.6 results are caused by the slightly 
different computation algorithms in the SAS procedures. The differences vanish with large samples.  

Ratio estimation involves biased estimation, except in the theoretical case where the intercept term 𝛽0 of the 

regression model 𝑦𝑘 = 𝛽0 + 𝛽1𝑥1𝑘 + 𝜀𝑘 is zero. The order of the bias is 1/n, indicating that with a small sample 
size the bias can be substantial. 

Table 4.7. Ratio estimation by the SAS procedure SURVEYREG for a SRSWOR sample SAMPLE7 of 𝑛 = 5 
elements. 

a) Estimated 𝛽-parameter 

 

Estimated Regression Coefficients 

Parameter 
Estimate 

𝛽̂1 

Standard 
Error 

𝑠𝑒(𝛽̂1) 

t 
Value 

Pr > 
|t| 

GT 

𝛽1 

20.6761657 2.72832884 7.58 0.0016 

 

b) Auxiliary information provided 

 

Estimate Coefficients 

Effect Row1 

𝑡𝑥1
 

GT 32896 
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c) Ratio estimate of CATCH total by ESTIMATE statement 

 

Estimate 

Label Estimate 

𝑡̂𝑅𝐴𝑇  

Standard Error 

𝑠. 𝑒(𝑡̂𝑅𝐴𝑇) 

CATCH total 680171 89752 
 

Regression estimation. We apply regression estimation to the estimation of the total of target variable CATCH 
under a SRSWOR sample, thus the strategy is now SRSWOR_REG. The variable GT (vessel tonnage) acts first 
as the auxiliary variable. The sample data set remains as SAMPLE7 also for this analysis. 

Regression estimator for a total uses a linear fixed-effects regression model as the assisting model. In the simplest 
case with a single auxiliary variable, the model is of the form: 

𝑦𝑘 = 𝛽0 + 𝛽1𝑥1𝑘 + 𝜀𝑘,         (24) 

where 𝑥1𝑘 are values of the continuous auxiliary variable and 𝜀𝑘 are residuals. Note that the assisting model now 
involves an intercept term.  

The model parameters intercept 𝛽0 and slope 𝛽1 are first estimated by weighted least squares with sampling 

weights. By inserting the HT estimate 𝑡̂𝐻𝑇 of CATCH and HT estimate 𝑡̂𝐻𝑇𝑥1
 of GT together with the known 

population total 𝑡𝑥1
 of GT (Table 4.4) as well as the estimated slope 𝛽̂1 into the textbook formulation of a 

regression estimator (Lehtonen & Pahkinen 2004 p. 97): 

𝑡̂𝑅𝐸𝐺 = 𝑡̂𝐻𝑇 + 𝛽̂1(𝑡𝑥1
− 𝑡̂𝐻𝑇𝑥1

),        (25) 

we get an estimate 𝑡̂𝑅𝐸𝐺 = 722539 + 37.4647(32896.44 − 35938) = 608586. 

For variance estimation we use the textbook estimator for regression estimation (Lehtonen & Pahkinen 2004 p. 
98) that is based on the linearization method, given by: 

𝜈̂𝑆𝑅𝑆𝑊𝑂𝑅(𝑡̂𝑅𝐸𝐺) = 𝑁2(1 −
𝑛

𝑁
) (

1

𝑛
) (

𝑛−1

𝑛−𝑝
) × 𝑠̂𝑒𝐶𝐴𝐿

2 ,      (26) 

where 𝑠̂𝑒𝐶𝐴𝐿
2  is the sample variance of 𝑔 weighted residuals 𝑔𝑘𝑒𝑘 = 𝑔𝑘(𝑦𝑘 − 𝑦̂𝑘) with fitted values 𝑦̂𝑘 = 𝛽̂0 +

𝛽̂1𝑥1𝑘 from the model, and 𝑝 is the number of model parameters. The residual variance estimator is given by 

𝑠̂𝑒𝐶𝐴𝐿
2 = ∑ (𝑔𝑘𝑒𝑘 − 𝑒̅)2/(𝑛 − 1) 𝑛

𝑘=1  with 𝑒̅ = ∑ 𝑔𝑘𝑒𝑘/𝑛 𝑛
𝑘=1 , the mean of 𝑔-weighted residuals. 

Pseudoreplication methods can be used as an alternative.  

We execute the estimation by the SAS procedure SURVEYREG using estimator (26). In Table 4.8, estimation 

results for model (1) are displayed in Part a), including the estimates of the 𝛽-parameters and standard errors. 

Part b) contains the auxiliary information 𝑡𝑥0
 and 𝑡𝑥1

 supplied, where variable 𝑥0 refers to the intercept. 

Regression estimate 𝑡̂𝑅𝐸𝐺 for the total, with standard error estimate and confidence interval, is obtained by the 

SURVEYREG statement ESTIMATE. SAS results in tables 4.8 and 4.10 agree with R survey function svyglm 

results except for the constant (𝑛 − 1)/(𝑛 − 𝑝)  of the SAS variance formula (26) (sections A.6 and B.7.3). 
Regression estimation is also illustrated in Section 8.2 (the case study for Finland). 
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Table 4.8. Regression estimation by the SAS procedure SURVEYREG for the SRSWOR sample SAMPLE7 of 

𝑛 = 5  elements. 

 

a) Estimated 𝛽-parameters 

Estimated Regression Coefficients 

Parameter Estimate 
Standard 

Error 
t Value Pr > |t| 

Intercept 

𝛽0 
-6238.6791 2363.59006 -2.64 0.0576 

GT 

𝛽1 
37.4647 8.53363 4.39 0.0118 

 

 

b) Auxiliary information provided 

Estimate Coefficients 

Effect Row1 

Intercept 

𝑡𝑥0
 

100 

GT 

𝑡𝑥1
 

32896 

 

 

c) Regression estimate of CATCH total by ESTIMATE statement 

 

Estimate 

Label 
Estimate 

𝑡̂𝑅𝐸𝐺 

Standard Error 

𝑠. 𝑒(𝑡̂𝑅𝐸𝐺) 
Alpha 

Lower 

𝐿𝐶𝐿(𝑡̂𝑅𝐸𝐺) 

Upper 

𝑈𝐶𝐿(𝑡̂𝑅𝐸𝐺) 

CATCH total 608586 78985 0.05 389288 827884 
 

We next compute the coefficient of variation (5) and design effect estimate (7) for 𝑡̂𝑅𝐸𝐺 :  

 Coefficient of variation: 𝑐𝑣(𝑡̂𝑅𝐸𝐺) =
𝑠.𝑒(𝑡̂𝑅𝐸𝐺)

𝑡̂𝑅𝐸𝐺
=

78985

608586
= 0.13  

 Design effect estimate: : 𝑑𝑒𝑓𝑓(𝑡̂𝑅𝐸𝐺) =
𝜈̂𝑆𝑅𝑆𝑊𝑂𝑅(𝑡̂𝑅𝐸𝐺)

𝜈̂𝑆𝑅𝑆𝑊𝑂𝑅(𝑡̂𝐻𝑇)
=

789852

1478232 = 0.28 

Regression estimation with a single auxiliary variable GT appears effective for the CATCH total. Coefficient of 
variation is 13%, smaller than the SRSWOR_HT counterpart 20%. The deff estimate for the SRSWOR_REG 
strategy also indicates substantial improvement of statistical efficiency over the SRSWOR_HT strategy. 

Extension of regression estimation for multiple auxiliary variables is straightforward. Let us take the variables 
GT, DAS and DOM01 in the model. The model is now of the form: 

𝑦𝑘 = 𝛽0 + 𝛽1𝑥1𝑘 + 𝛽2𝑥2𝑘 + 𝛽3𝑥3𝑘 + 𝜀𝑘.      (27) 

We fit model (27) for SAMPLE8 of n = 20 units. The multiple regression estimator is given by: 

𝑡̂𝑅𝐸𝐺 = 𝑡̂𝐻𝑇 + 𝛽̂1(𝑡𝑥1
− 𝑡̂𝐻𝑇𝑥1

) + 𝛽̂2(𝑡𝑥2
− 𝑡̂𝐻𝑇𝑥2

) + 𝛽̂3(𝑡𝑥3
− 𝑡̂𝐻𝑇𝑥3

).   (28) 

Materials for computing 𝑡̂𝑅𝐸𝐺 with equation (28) under model (27) are summarized in Table 4.9. Estimated 
slopes are given in Part a) of SURVEYREG output presented in Table 4.10. We obtain: 

𝑡̂𝑅𝐸𝐺 = 610603 + 20.5547(32896.44 − 31255) + 33.3466(18308 − 18680) − 545.3683(30 −
40) = 637401. 
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Table 4.9. Components needed for the construction of a regression estimator for CATCH total with three 

auxiliary variables under SAMPLE8 of 𝑛 = 20 elements. 

Variable Source Component 

CATCH sample 𝑡̂𝐻𝑇 = 610603 

GT sample 𝑡̂𝐻𝑇𝑥1 = 31255 

GT population 𝑡𝑥1
= 32896.44 

DAS sample 𝑡̂𝐻𝑇𝑥2 = 18680 

DAS population 𝑡𝑥2
= 18308 

DOM01 sample 𝑡̂𝐻𝑇𝑥3 = 40 

DOM01 population 𝑡𝑥3
= 30 

Coefficient of variation is 𝑐𝑣(𝑡̂𝑅𝐸𝐺) =
31040

637401
= 0.048 and 𝑑𝑒𝑓𝑓(𝑡̂𝑅𝐸𝐺) =

310402

544392 = 0.32. The cv for 

SRSWOR_HT strategy was 𝑐𝑣(𝑡̂𝑆𝑅𝑆𝑊𝑂𝑅) = 0.089 indicating better efficiency for strategy SRSWOR_REG. 

 

Table 4.10. Regression estimation for CATCH with GT, DAS and DOM01 as auxiliary variables by SAS 

procedure SURVEYREG for the SRSWOR sample SAMPLE8 of 𝑛 = 20 elements. 

a) Estimated 𝛽-parameters 

Estimated Regression Coefficients 

Parameter Estimate Standard 
Error 

t Value Pr > |t| 

Intercept 

𝛽0 
-6329.2340 1657.38173 -3.82 0.0012 

GT 

𝛽1 
20.5547 5.06384 4.06 0.0007 

DAS 

𝛽2 
33.3466 6.22707 5.36 <.0001 

DOM01 

𝛽3 
-545.3683 561.62140 -0.97 0.3437 

 

b) Auxiliary information provided 

Estimate Coefficients 

Effect Row1 

Intercept 

𝑡𝑥0
 

100 

GT 

𝑡𝑥1
 

32896 

DAS 

𝑡𝑥2
 

18308 

DOM01 

𝑡𝑥3
 

30 
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c) Regression estimate of CATCH total by ESTIMATE statement 

Estimate 

Label 
Estimate 

𝑡̂𝑅𝐸𝐺 

Standard Error 

𝑠. 𝑒(𝑡̂𝑅𝐸𝐺) 
Alpha 

Lower 

𝐿𝐶𝐿(𝑡̂𝑅𝐸𝐺) 

Upper 

𝑈𝐶𝐿(𝑡̂𝑅𝐸𝐺) 

CATCH total 637401 31040 0.05 572433 702369 
 

Simulation experiment. For comparing the average capacity of strategy SRSWOR_REG with SRSWOR_HT 

we conduct a small pedagogic simulation experiment. We draw 𝐾 = 100 SRSWOR samples of size 𝑛 = 20 

vessels from SIMPOP, compute the estimated total, s.e and cv for the regression estimator 𝑡̂𝑅𝐸𝐺 under the 

SRSWOR_REG strategy and the HT estimator 𝑡̂𝐻𝑇 under the SRSWOR_HT strategy from each sample, and 
compute the mean of the statistics over the 100 samples. Auxiliary variables are GT, DAS and DOM01. The 
results are in Table 4.11.  

The average standard error of 𝑡̂𝑅𝐸𝐺 is smaller than that of 𝑡̂𝐻𝑇, leading to better efficiency for strategy 
SRSWOR_REG. This is further manifested by the coefficients of variation: average cv for REG estimator is 4% 
and average cv for HT estimator is 7%. The results also indicate the design unbiasedness of the regression 
estimator. It thus seems that the application of regression estimation makes sense.  

Table 4.11 Means of estimated totals, standard errors and coefficients of variation for CATCH from 𝐾 = 100 

simulated SRSWOR samples of size 𝑛 = 20 vessels from SIMPOP for strategies SRSWOR_HT and 
SRSWOR_REG with GT, DAS and DOM01 as auxiliary variables.  

Strategy VarName Replicates 

Averages over simulations 

SumWgt n 
Total 

𝑡̂ 

StdDev 

𝑠. 𝑒(𝑡̂) 

CV 

𝑐𝑣(𝑡̂) 

SRSWOR_REG CATCH 100 100.000000 20 626600 26163 0.041837 

SRSWOR_HT CATCH 100 100.000000 20 626895 44061 0.070264 

True total     624036   

 

4.2.4 Estimation for domains 

We continue with the estimation for population subgroups or domains where the sample size in domains is not 
controlled by stratification but is a random variate; the domains are thus of unplanned type. In Section 3.3.4 we 
used the strategy SRSWOR_HT for the estimation for unplanned domains under the conditional approach 
(variances of estimators were computed conditionally on the observed domain sample sizes) and the 
unconditional approach (the randomness of domain sample sizes were accounted for by using the extended 
domain variables technique). We use here ratio estimation applied separately for the two domains, thus 
resembling the conditional approach for estimation for unplanned domains. The strategy adopted thus is 
SRSWOR_RAT.  

The analysis is executed independently for the two domains by the SAS procedure SURVEYMEANS (RATIO 
statement). As the domain variable we use the two-category variable DOM01. For auxiliary information we use 

the known domain sizes 𝑁0 = 70 and 𝑁1 = 30 in population. CATCH is the variable of interest.  



49 

 

For domain ratio estimation of CATCH totals with DOM01 as the two-category domain variable we use the 

SRSWOR sample SAMPLE9 of size 𝑛 = 20 vessels. The distribution of the sample over the domains is 

𝑛0 = 12 for the first domain and 𝑛1 = 8 for the second, as presented in Table 4.13. 

A domain-specific ratio estimator can be written as 𝑡̂𝑑𝑅𝐴𝑇 = 𝑟̂𝑑𝐻𝑇 × 𝑁𝑑 =
𝑡̂𝑑𝐻𝑇

𝑁̂𝑑
𝑁𝑑 where 𝑟̂𝑑𝐻𝑇 =

𝑡̂𝑑𝐻𝑇

𝑁̂𝑑
 is the HT 

estimated ratio, 𝑁𝑑 is the known domain size in population and 𝑁̂𝑑 = ∑ 𝑤𝑘𝑘∈𝑠𝑑
 is the HT estimated domain 

size, and 𝑡̂𝑑𝐻𝑇 = ∑ 𝑤𝑘𝑦𝑘𝑘∈𝑠𝑑
. Here 𝑁̂0 = 60 and 𝑁̂1 = 40. 

We obtain:  

 DOM01=0:  𝑡̂0𝑅𝐴𝑇 =
𝑡̂0𝐻𝑇

𝑁̂0
𝑁0 =

419535.95

60
× 70 = 489459 

 DOM01=1:  𝑡̂1𝑅𝐴𝑇 =
𝑡̂1𝐻𝑇

𝑁̂1
𝑁1 =

191067.50

40
× 30 = 143301 

HT estimates 𝑡̂0𝐻𝑇 and 𝑡̂1𝐻𝑇 are from Table 3.11. For variance estimation we apply the standard SRSWOR 
variance formula of ratio estimator (Lehtonen & Pahkinen 2004 p. 93) separately for each domain, given by  

𝜈̂𝑆𝑅𝑆𝑊𝑂𝑅(𝑡̂𝑑𝑅𝐴𝑇) = 𝑁𝑑
2 (1 −

𝑛𝑑

𝑁𝑑
) (

1

𝑛𝑑
) ∑ (𝑦𝑘 − 𝑟̂𝑑𝐻𝑇𝑥𝑑𝑘)2/(𝑛𝑑 − 1)𝑘∈𝑠𝑑

, 

where 𝑥𝑑𝑘 = 1 for 𝑘 ∈ 𝑠𝑑 in this case. Here 𝑟̂0𝐻𝑇 = 6992.266 and 𝑟̂1𝐻𝑇 = 4776.687. We obtain: 

 DOM01=0:  𝜈̂(𝑡̂0𝑅𝐴𝑇) = 702 (1 −
12

70
) (

1

12
) × 103228219.96/(12 − 1) = 563482 

 DOM01=1:  𝜈̂(𝑡̂1𝑅𝐴𝑇) = 302 (1 −
8

30
) (

1

8
) × 103228219.96/(8 − 1) = 128362 

Results are collected in Table 4.11. A comparison with Table 3.11 indicates that our results under 
SRSWOR_RAT strategy are close to those from strategy SRSWOR_HT for the conditional approach for 
variance estimation with using the known domain sizes in population.  

Estimators of domain totals using known domain sizes as auxiliary information can also be derived as Hajék type 

estimators 𝑡̂𝑑𝐻𝐴 =
𝑁𝑑

𝑁̂𝑑
𝑡̂𝑑𝐻𝑇 giving the same numerical results as the ratio estimators in Table 4.12. Variance 

estimation for ratio and Hajék type estimators for domain totals is discussed in Lehtonen & Veijanen (2009) p. 
241-242. 

Table 4.12 Estimation of CATCH totals for two unplanned domains under strategy SRSWOR_RAT computed 

for SAMPLE9 of size 𝑛 = 20 vessels. 

DOMAIN 

𝑑 
Variable n Sum of Weights 

Total 

𝑡̂𝑅𝐴𝑇,𝑑 

Std Dev 

𝑠. 𝑒(𝑡̂𝑅𝐴𝑇,𝑑) 

Coeff of Var 

𝑐𝑣(𝑡̂𝑅𝐴𝑇,𝑑) 

0 CATCH 12 60.000000 489459 563482 0.11512 

1 CATCH 8 40.000000 143301 128362 0.08957 
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4.3 Post-stratification 

4.3.1 Background  

Discrete or categorical auxiliary information can be used in stratification of a sample after it has been drawn (post-
stratification). The idea in post-stratification, similarly as in stratified sampling (Section 3.6), is to make the 
estimation more efficient by selecting post-strata where the within-stratum variation of the variable of interest is 
smaller than the variation between the strata. Auxiliary information for post-stratification is often obtained from 
official statistics or some other reliable source. Post-stratification can also be used in the adjustment of unit 
nonresponse in surveys (Chapter 5). 

4.3.2 Sampling and estimation  

Similarly as for ratio and regression estimation, post-stratification is applicable under any sampling design, but a 
relatively simple sampling design is often adopted such as simple random sampling or stratified SRS. 

 Post-stratification estimator of a population total is given by 

𝑡̂𝑃𝑂𝑆𝑇 = ∑ 𝑡̂𝑐
𝐶
𝑐=1 = ∑ ∑ 𝑤𝑃𝑂𝑆𝑇,𝑐𝑘𝑦𝑘

𝑛𝑐
𝑘=1

𝐶
𝑐=1 ,       (29) 

where 𝑤𝑃𝑂𝑆𝑇,𝑐𝑘 are post-stratum weights for element 𝑘 in post-stratum 𝑐 derived for the entire sample. Post-

stratum weights in (29) are 

𝑤𝑃𝑂𝑆𝑇,𝑐𝑘 = 𝑔𝑐𝑘𝑤𝑐𝑘,  

where 𝑔𝑐𝑘 = 𝑁𝑐 𝑁̂𝑐⁄  and the denominator 𝑁̂𝑐 = ∑ 𝑤𝑐𝑘  
𝑛𝑐
𝑘=1  is the estimated post-stratum size, and 𝑤𝑐𝑘 = 1/𝜋𝑐𝑘 

are the original sampling weights. For variance estimation, the post-strata may be regarded as unplanned domains 
(see sections 2.5, 3.3.4 and 4.2.4). 

4.3.3 Worked example 

Preliminaries. We continue working with the set of active vessels in SIMPOP and the target variable CATCH. 
Post-stratification is introduced as a calibration method in a simple and well manageable case. In the method, we 
assume an access to a single categorical auxiliary variable suitable for post-stratification. The binary variable 
DOM01 (fishing type) is chosen, which indicates whether a vessel catches "expensive" fish (DOM01 = 1) or not 
(DOM01 = 0). Two post-strata will be constructed under the given sampling design.  

We study the estimation strategy SRSWOR_POST, where the sample is drawn from SIMPOP by SRSWOR and 
the estimation relies on post-stratification. The strategy SRSWOR_HT serves as the reference strategy. We 
compare the results with our reference strategy by computing coefficient of variation and design effect estimates.  

Sample selection. The SRSWOR sample is SAMPLE9, corresponding to the SRSWOR sample SAMPLE8 in 
Section 4.3. The original sample contains the values of the ID variable, target variable CATCH, auxiliary variable 
DOM01 and the sampling weight. The sample data set has been amended with five derived variables that are 
used in constructing the post-stratification estimator. A two-class variable POST2 with value 1 (if DOM=0) and 
2 (if DOM=1) has been created for post-stratum identification. To illustrate post-stratification by calibration we 

use a sample size 𝑛 = 20 active vessels from SIMPOP. The complete data set is displayed in Table 4.12. The 
sample data set is sorted by the post-stratification variable. 

Estimation. The binary auxiliary variable DOM01 is selected for post-stratification. We execute the estimation 

of the post-stratified estimate 𝑡̂𝑃𝑂𝑆𝑇 with the calibration technique, based on reweighting. For calibration we 

compute 𝑔 weights and calibrated weights for the two post-strata. Data for 𝑔 weights consists of the population 
distribution and weighted sample distribution of the variable POST2, given in the set-up below: 

Variable 
Level 

c 

n 

𝑛𝑐 
𝑁𝑐 𝑁̂𝑐 

POST2 

1 12 70 60 

2 8 30 40 
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Using notation of Section 4.3.2, g weights are computed as 𝑔𝑐𝑘 =
𝑁𝑐

𝑁̂𝑐
, where 𝑁𝑐 is known size of post-stratum 𝑐 

and 𝑁̂𝑐 = ∑ 𝑤𝑐𝑘 
𝑛𝑐
𝑘=1  is the HT estimate of 𝑁𝑐 , 𝑐 = 1,2, where 𝑤𝑐𝑘 = 5 is the SRSWOR sampling weight. We 

get for post-stratum 1: 𝑔1𝑘 =
𝑁1

𝑁̂1
=

70

60
= 1.16667 and for post-stratum 2: 𝑔2𝑘 =

𝑁2

𝑁̂2
=

30

40
= 0.75 . The g 

weights are included in Table 4.13. Calibrated weights in Table 4.13 are computed as 𝑤𝑃𝑂𝑆𝑇,𝑐𝑘 = 𝑤𝑐𝑘 × 𝑔𝑐𝑘. 

The sum of the final column in the table provides the post-stratified (calibration) estimate 𝑡̂𝑃𝑂𝑆𝑇 of CATCH. 
The estimate is thus computed by (29) as 

𝑡̂𝑃𝑂𝑆𝑇 = ∑ ∑ 𝑤𝑃𝑂𝑆𝑇,𝑐𝑘𝑦𝑘 = 
𝑛𝑐
𝑘=1

2
𝑐=1 632759. 

We execute post-stratification by the SAS procedure SURVEYMEANS using the POSTSTRATA statement. The 

procedure estimates totals, standard errors and cv:s by using the post-stratification (calibration) weights 𝑤𝑃𝑂𝑆𝑇,𝑐𝑘 

instead of the original sampling weights 𝑤𝑘. Variance estimate for 𝑡̂𝑃𝑂𝑆𝑇 is computed by equation: 

𝜈̂(𝑡̂𝑃𝑂𝑆𝑇) = 𝑛 (1 −
𝑛

𝑁
) ∑ ∑ (𝑤𝑃𝑂𝑆𝑇,𝑐𝑘𝑦𝑘 − 𝑡̂𝑃𝑂𝑆𝑇,𝑐/𝑛𝑐)

2
/(

𝑛𝑐
𝑘=1

𝐶
𝑐=1 𝑛 − 1),   (30) 

where 𝑡̂𝑃𝑂𝑆𝑇,1 = 489459 and 𝑡̂𝑃𝑂𝑆𝑇,2 = 143301. We obtain: 

𝜈̂(𝑡̂𝑃𝑂𝑆𝑇) = 20 × (1 −
20

100
) × 3708808885.8/(20 − 1) = 55885.662. 

Table 4.13 SRSWOR sample SAMPLE9 of 𝑛 = 20 active vessels from SIMPOP of 𝑁 = 100 vessels completed 
with sample values of auxiliary variable DOM01 and five derived variables.  

Obs 

k 
ID 

CATCH 

𝑦𝑘  

DOM01 

𝑥3𝑘 

POST2 

c 

Sampling 

Weight 

𝑤𝑐𝑘 

g 

Weight 

𝑔𝑐𝑘 

Post- 

Weight 

𝑤𝑃𝑂𝑆𝑇,𝑐𝑘 

Components 

𝑤𝑃𝑂𝑆𝑇,𝑐𝑘 × 𝑦𝑘 

1 1 3541.44 0 1 5 1.1667 5.833 20658.46 

2 9 2752.96 0 1 5 1.1667 5.833 16058.98 

3 29 7518.96 0 1 5 1.1667 5.833 43860.73 

4 41 3651.90 0 1 5 1.1667 5.833 21302.81 

5 47 8715.89 0 1 5 1.1667 5.833 50842.84 

6 56 6185.86 0 1 5 1.1667 5.833 36084.29 

7 63 10270.01 0 1 5 1.1667 5.833 59908.56 

8 68 11693.89 0 1 5 1.1667 5.833 68214.55 

9 69 8709.47 0 1 5 1.1667 5.833 50805.39 

10 71 4031.71 0 1 5 1.1667 5.833 23518.38 

11 78 6219.11 0 1 5 1.1667 5.833 36278.25 

12 94 10615.99 0 1 5 1.1667 5.833 61926.79 

13 7 2642.64 1 2 5 0.7500 3.750 9909.90 

14 20 4158.35 1 2 5 0.7500 3.750 15593.81 

15 22 3538.14 1 2 5 0.7500 3.750 13268.03 
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Obs 

k 
ID 

CATCH 

𝑦𝑘  

DOM01 

𝑥3𝑘 

POST2 

c 

Sampling 

Weight 

𝑤𝑐𝑘 

g 

Weight 

𝑔𝑐𝑘 

Post- 

Weight 

𝑤𝑃𝑂𝑆𝑇,𝑐𝑘 

Components 

𝑤𝑃𝑂𝑆𝑇,𝑐𝑘 × 𝑦𝑘 

16 24 4962.48 1 2 5 0.7500 3.750 18609.30 

17 34 4363.01 1 2 5 0.7500 3.750 16361.29 

18 37 6682.50 1 2 5 0.7500 3.750 25059.38 

19 51 6638.87 1 2 5 0.7500 3.750 24895.76 

20 79 5227.51 1 2 5 0.7500 3.750 19603.16 

    122120.68    100 20 100.000 632760.63 

 

Results in Table 4.13 by the SAS procedure SURVEYMEANS agree with results from the R survey function 

postStratify (sections A.7 and B.8.2).  

Post-stratification resembles stratified sampling, but there are certain differences. In stratified sampling, stratum 
sample sizes are fixed by sample allocation. In post-stratification, post-strata are created after sample selection 
and there is no underlying allocation scheme. Post-stratum sample sizes are not controlled by the sampling 
design but are random variates, similarly as for unplanned domains under the unconditional approach. In 
SURVEYMEANS the variance estimate is computed using the conditional approach given observed post-
stratum sizes (i.e. assuming they are fixed quantities) and thus, the randomness of post-stratum sizes is not 
accounted for. This leads to somewhat liberal variance estimates at least in small samples, because the 
unconditional variance estimates would be larger (see details e.g. Lehtonen & Pahkinen 2004 pp. 89-92).  

Estimated coefficient of variation (2) and design effect (7) for 𝑡̂𝑃𝑂𝑆𝑇 are the following. 

 Coefficient of variation: 𝑐𝑣(𝑡̂𝑃𝑂𝑆𝑇) =
𝑠.𝑒(𝑡̂𝑃𝑂𝑆𝑇)

𝑡̂𝑃𝑂𝑆𝑇
=

55885.66

632759
= 0.088  

 Design effect estimate: 𝑑𝑒𝑓𝑓(𝑡̂𝑃𝑂𝑆𝑇) =
𝜈̂𝑆𝑅𝑆𝑊𝑂𝑅(𝑡̂𝑃𝑂𝑆𝑇)

𝜈̂𝑆𝑅𝑆𝑊𝑂𝑅(𝑡̂𝐻𝑇)
=

55885.662

544392 = 1.05. 

Coefficient of variation estimate of 8.8% is reasonable for practical purposes. The deff estimate indicates that 
nearly equal efficiency would be obtained by strategies SRSWOR_POST and SRSWOR_HT. Results for strategy 
SRSWOR_POST computed with SURVEYMEANS are summarized in Table 4.13. Estimates for SRSWOR_HT 
of Section 3.3.4 are also given. 

It can be seen that post-stratification does not improve relative precision much in this case. A certain benefit still 
remains. By post-stratification estimation, the sample distribution of DOM01 will coincide with that in the 
population. This property is called coherence and is appreciated in official statistics. It is often considered feasible 
that marginal distributions (or totals) of auxiliary variables in a survey reproduce the published official statistics 

of these variables. By using data in Table 4.14 we get 𝑡̂𝑃𝑂𝑆𝑇,𝑥3
= ∑ ∑ 𝑤𝑃𝑂𝑆𝑇,𝑐𝑘𝑥3𝑘 = 3.750 × 8 = 𝑡𝑥3

=
𝑛𝑐
𝑘=1

2
𝑐=1

30 . 

Table 4.14 Estimated totals, standard errors and coefficients of variation for CATCH under strategies 

SRSWOR_POST and SRSWOR_HT computed for SAMPLE9 of size 𝑛 = 20 vessels. 

Strategy Variable n Sum of Weights 
Total 

𝑡̂ 

Std Dev 

𝑠. 𝑒(𝑡̂) 
95% CL 

Coeff of Var 

𝑐𝑣(𝑡̂) 

SRSWOR_POST CATCH 20 100.000000 632759 55889 515782.798 749735.535 0.088325 

SRSWOR_HT CATCH 20 100.000000 610603 54439 496661.885 724544.886 0.089156 
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4.4 Comparison of model-assisted estimates 
We finally compare the efficiency of ratio and regression estimation and post-stratification in the estimation of 

CATCH total under the same SRSWOR sample of 𝑛 = 20 elements that was used in Sections 3.3.4, 4.2.3 and 
4.3.3. As auxiliary data we use the two-category post-stratification variable POST2 under strategy 
SRSWOR_POST, the continuous variable GT under SRSWOR_RAT and GT, DAS and DOM01 for 
SRSWOR_REG. Results are in Table 4.15.  

Obviously, a clever use of auxiliary information in model-assisted estimation can improve substantially the 
efficiency of estimation when compared to HT estimation for a simple random sample. Regression estimation 
offers a flexible tool for efficient estimation with multiple auxiliary variables requiring minimal auxiliary 
information. 

Table 4.15 Estimated totals, standard errors, coefficients of variation and design effects for CATCH under 
strategies SRSWOR_HT, SRSWOR_POST, SRSWOR_RAT and SRSWOR_REG, computed for SAMPLE9 of 

size 𝑛 = 20 vessels. 

Strategy n 
Auxiliary 

Data 

Total 

𝑡̂ 

Std Dev 

𝑠. 𝑒(𝑡̂) 

Coeff 

of Variation 

𝑐𝑣(𝑡̂) 

Deff 

𝑑𝑒𝑓𝑓(𝑡̂) 

SRSWOR_HT 20 none 610603 54439 0.089156 1.00 

SRSWOR_POST 20 POST2 632759 55889 0.088325 1.05 

SRSWOR_RAT 20 GT 654899 46310 0.070713 0.72 

SRSWOR_REG 20 GT, DAS, DOM01 637401 31040 0.048698 0.32 
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5 Treatment of nonresponse 

5.1 Introduction 
Nonresponse is common in surveys where sample data are collected by direct data collection methods such as 
personal interviews and postal questionnaires. Missing data can sometimes also appear in administrative registers. 
In the course of data collection some information may be lost, the main reason being unit nonresponse. The 
number of records in the sample data set will be smaller than intended. If the sample size was not inflated 
beforehand by an anticipated nonresponse, the precision of estimates will be weaker than would be with the 
original sample size. The set-up below shows how missingness affects the analysis data set.  

Type of missingness Effect on the analysis data set 

Unit nonresponse The whole data record remains missing (or all items were rejected) 

Item nonresponse One of more items for one or more variables are missing/are rejected 

Sub-unit or partial nonresponse All data from one or more elements within a cluster are missing  

Nonresponse causes selection bias in estimates if the responding and nonresponding sets of the sample differ with 
respect to the distribution of survey variables. Various methods have been proposed in the literature to adjust for 
selection bias. Major adjustment methods assume ignorable nonresponse, where response mechanism, i.e. an unknown 
stochastic process that generates response or non-response in survey, is independent on the target variable of 
interest when conditioning on one or several auxiliary variables. The selection bias can then be adjusted for by 
conditioning on the covariates, for example by inserting the auxiliary variables as covariates in a nonresponse 
model. Under a more serious non-ignorable nonresponse, selection bias does not vanish after conditioning on the 
covariates. This type of missingness is difficult to be handled. Sometimes an assumption of a completely random 
missingness is made, i.e. missingness does not correlate with the survey variables. Unfortunately, the assumption of 
no selection bias is rarely in effect in real world.  

Some common methods for dealing with missingness in survey are introduced in this chapter. These include 
imputation methods (mean imputation, hot deck imputation and regression imputation) for adjusting for item 
nonresponse and reweighting methods for unit nonresponse adjustment, such as the response homogeneity 
(RHG) technique. In the worked example section (Section 5.5) we apply methods of Chapter 4 (regression 
estimation and post-stratification) for adjusting missingness in a survey. Methods dealing with nonresponse are 
discussed widely in the literature, for example Groves et al. (2002), Lehtonen & Pahkinen (2004), Särndal & 
Lundström (2005), Enders (2010) and Little & Rubin (2014). 

5.2 Response mechanism 
Various hypothetical response mechanisms have been suggested in the literature. Under a missing completely at 
random (MCAR) mechanism the probability of missingness is independent on the observed or missing data. This 
option is rarely in effect in real world. If the probability of response depends only on the observed data, 
missingness is said to follow a missing at random (MAR) mechanism. The MAR assumption is the most common 
in surveys, and many methods and programs for the adjustment of selection bias caused by the missingness are 
relying on this assumption. Thirdly, if the probability of nonresponse depends both on observed and missing 
data, response mechanism is defined as not missing at random (NMAR). From the three mechanisms the NMAR 
assumption is the most difficult to address as the missing values remain unknown (Heeringa et al. 2017). 

5.3 Traditional nonresponse treatment methods 
There are numerous traditional nonresponse treatment methods available and if the number of the missing 
values is relatively small or the response mechanism can be assumed ignorable the methods may provide a quick 
fix to the problem. Four traditional methods are described.  
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5.3.1 Case deletion methods 

One of the simplest and probably the most popular traditional nonresponse treatment methods is the case deletion 
methods where records are removed from data matrix if they contain any missing information. In the complete unit 
deletion every unit with any missing item values is deleted before the analysis. This kind of deletion leads to a 
complete data set that is easy to analyze but may seriously distort the estimation results if the assumption of the 
MCAR mechanism is not in effect.  

For pairwise deletion method, units with missing item information are not removed from the analysis data set but are 
‘dropped out’ when these units cannot be used in a specific analysis. The number of observations, therefore, 
might change for example in computing several pairwise correlation coefficients and fitting regression models 
with different sets of covariates. If not otherwise specified, the pairwise deletion is the default treatment of 
missing items in most statistical software packages. Generally, the deletion also wastes data and leads to 
decreased statistical power. It cannot, therefore, be recommended unless the amount of missing data is trivially 
small (Enders 2010). 

5.3.2 Mean imputation 

One popular traditional method is mean imputation where missing values are replaced with some kind of mean 
value statistics. This approach is easy to understand but it can seriously distort the parameter estimates as the 
replaced values are ‘forced’ to the mean values. Intuitively it is clear that the use of the mean values decreases 
variance estimates.  

5.3.3 Hot-deck imputation 

Imputation is called hot-deck imputation when missing values are replaced with real observations of the same 
variable taken from donors. The method may be supplemented by drawing the donors from groups of similar 
observations. Hot-deck imputation does not necessarily underestimate the variance estimates as much as mean 
imputation but can produce biased estimates for the measures of association (e.g. correlations, regression 
estimates).  

5.3.4 Regression imputation  

In regression imputation a regression model is specified to predict the missing values by using the estimated model 

parameters and a set of covariates. Missing values are replaced with predicted values 𝑦̂𝑘 = 𝒙𝑘′𝜷̂, where 𝒙𝑘 is a 

vector of covariate values for unit 𝑘 and𝜷̂ is the vector of estimated model parameters. If several analysis 
variables are imputed, different regression specification might be needed for each variable. Even though 
regression estimation is superior when compared to mean imputation, it can lead to overestimation of 
correlations.  

Stochastic regression imputation is a modified version of the ordinary regression imputation. After the specification of 

regression model, normally distributed random numbers (𝑢𝑖 ) are generated and attached to the predicted 

values 𝑦̂𝑘 giving modified predictions 𝑦̂𝑘
∗ = 𝒙𝑘′𝜷̂ + 𝑢𝑘 . When compared to the regression imputation, the extra 

step restores some of the original variation of the variable and leads to unbiased parameter estimates under the 
MAR response mechanism (Enders 2010). 

5.4 Reweighting for unit nonresponse  
For unit nonresponse, complete records may be missing. As the sample data set is smaller than intended, 
standard errors are increased. More importantly, estimation may be biased if the missingness is selective. 
Adjustment for selection bias can be done with reweighting methods by suitably modifying the original sampling 
weights.  

Assuming estimated response propensities 𝜃𝑘; 𝑘 ∈ 𝑠, where 𝑠 is the original sample of n units, modified sampling 

weights can be written as 𝑤𝑘,𝑟𝑤 = 1/(𝜋𝑘𝜃𝑘). Estimated response propensities can be obtained for example by 

fitting a logistic regression model on a binary variable having value 1 for respondents and 0 for nonrespondents 
with covariates that explain the missingness and whose sample values are available both for respondents and 
nonrespondents.  
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Further, with a naïve assumption of constant response propensity 𝜃𝑘 for all population units, a reweighted 
Horvitz-Thompson estimator for total is given by  

𝑡̂𝑅𝐻𝑇 = 𝜃−1 ∑ 𝑤𝑘𝑦𝑘
𝑛(𝑟)

𝑘=1 , 

where n(r) is the number of responding sample units and 𝜃 = 𝑛(𝑟) 𝑛⁄  is an estimator of the common response 

propensity. It is, however, preferable to model the structure of the response probabilities in greater detail. A 
straightforward modification is the response homogeneity group method (RHG method), where the population is 

divided into 𝐶 response groups such that estimated response propensity 𝜃𝑐 is assumed equal in response group c 

but can differ between groups. Propensities 𝜃𝑐 are obtained in a similar manner as for 𝑡̂𝑅𝐻𝑇. The RHG estimator 
for total is given by  

𝑡̂𝑅𝐻𝐺 = ∑ (𝜃𝑐)
−1𝐶

𝑐=1 ∑ 𝑤𝑐𝑘𝑦𝑐𝑘
𝑛𝑐(𝑟)

𝑘=1 ,  

where 𝜃𝑐 = 𝑛𝑐(𝑟) 𝑛𝑐⁄  (Lehtonen & Pahkinen 2004).  

5.5 Worked example 
Preliminaries. We examine here the applicability of model-assisted and calibration methods for the adjustment 
for the possible bias due to nonresponse. Adjustment for nonresponse is discussed for the case where some 
measurements or entire records are missing for the target variable. If aggregate level or unit level auxiliary 
variables and their complete sample values are available, the model-assisted methods and calibration techniques 
of Chapter 4 can be used. Adjustment may be effective if the response mechanism is of ignorable type so that the 
response mechanism may correlate with the auxiliary variables but not with the target variable. We examine 
nonresponse adjustment with a single auxiliary variable. The methods can be readily extended to multiple 
auxiliaries case. 

Sample selection. We assume that the original n = 20 element sample has been drawn by SRSWOR from 
SIMPOP. The realized sample SAMPLE10 is the one we had in Section 4.4.4. Target variable is CATCH, and 
the continuous variable GT and categorical variable POST5 have been taken from the sampling frame and 
merged with the sample data set. POST5 was created by dividing GT into five equally-sized classes. GT is aimed 
for regression estimation and POST5 is for post-stratification. 

Because of unit nonresponse in the data collection phase, the sample data set is contaminated by nonresponse 
for the target variable CATCH. We generated nonresponse for CATCH in a controlled manner, under the 
Missing at Random (MAR) missingness mechanism. MAR refers to ignorable type missingness, where the 
nonresponse mechanism and the target variable are conditionally independent given the auxiliary variables or 
covariates. 

The analysis data set of n = 20 elements includes complete records for two auxiliary variables GT and POST5 
for all 20 elements. Measurements for of CATCH are missing for two records. The data set includes a 

missingness indicator variable with value 𝐼𝑘 = 1 for respondents and 𝐼𝑘 = 0  for nonrespondents. The sample 
data set is sorted by the variable POST5 and is displayed in Table 5.1. 



57 

 

Table 5.1 Analysis data set SAMPLE10 of 𝑛 = 20 vessels and two vessels with missing data for target variable 
CATCH. 

Obs 

k 

ID I 

𝐼𝑘 

CATCH 

𝑦𝑘  

GT 

𝑥1𝑘 

POST5 

𝑥2𝑘 

Sampling 

Weight 

𝑤𝑘 

1 7 1 2642.64 218.4 1 5 

2 9 1 2752.96 210.6 1 5 

3 22 1 3538.14 229.6 1 5 

4 24 1 4962.48 232.0 1 5 

5 29 1 7518.96 266.8 1 5 

6 37 0 ... 270.0 1 5 

7 1 1 3541.44 280.0 2 5 

8 20 1 4158.35 305.2 2 5 

9 41 1 3651.90 282.0 2 5 

10 34 1 4363.01 312.0 3 5 

11 51 0 ... 320.1 3 5 

12 56 1 6185.86 319.6 3 5 

13 69 1 8709.47 316.8 3 5 

14 78 1 6219.11 321.9 3 5 

15 47 1 8715.89 359.7 4 5 

16 71 1 4031.71 370.8 4 5 

17 63 1 10270.01 392.0 5 5 

18 68 1 11693.89 399.6 5 5 

19 79 1 5227.51 407.0 5 5 

20 94 1 10615.99 436.8 5 5 

Sum    18       100 

... denotes a missing value of a variable for the record 

Estimation. For adjusting for nonresponse in the sample data we apply model-assisted or reweighting methods; 
post-stratification and regression estimation were chosen. The aim is that the re-weighted estimate of the 
auxiliary variable POST5 or GT for the incomplete data set reproduces the known population distribution of 
POST5 or the population total of GT. A successful adjustment for nonresponse bias requires nonzero 
correlation between the auxiliary variable and the response mechanism. In addition to adjust for the 
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nonresponse, improvement of efficiency of estimation for CATCH is possible if the auxiliary variable correlates 
with CATCH. By the statements above, the methods introduced in Chapter 4 are promising. 

We apply first the estimation strategy SRSWOR_POST, where the original sample has been drawn by SRSWOR 
and the adjustment for nonresponse relies on post-stratification. As a second alternative we apply 
SRSWOR_REG strategy by regression estimation with GT as the auxiliary variable. The strategy SRSWOR_HT 
serves as reference strategy. We compare the results with the reference strategy by computing coefficient of 
variation and design effect estimates.  

The five-category variable POST5 is chosen for post-stratification. We execute the estimation of the post-

stratified estimate 𝑡̂𝑃𝑂𝑆𝑇 with the SAS procedure SURVEYMEANS. In regression estimation we use the 

procedure SURVEYREG for the estimation of CATCH total by the estimator 𝑡̂𝑅𝐸𝐺 . Results are summarized in 

Table 5.2. Totals estimated by SURVEYREG and R survey functions postStratify and svyglm are equal 
but standard errors differ somewhat because of slightly different variance estimators. 

Table 5.2 Estimated totals, standard errors and coefficients of variation for CATCH under strategies 

SRSWOR_HT, SRSWOR_POST and SRSWOR_REG computed for the complete data set of size 𝑛 = 20 

vessels and incomplete data set of 𝑛 = 18 vessels. 

Strategy Variable n 

Sum of  

Weights 

𝑤𝑘 

Total 

𝑡̂ 

Std Dev 

𝑠. 𝑒(𝑡̂) 

Coeff of  

Variation 

𝑐𝑣(𝑡̂) 

a) Full sample estimates (no nonresponse) 

SRSWOR_HT CATCH 20 100 610603 54439 0.089 

b) Incomplete data, two missing values, no adjustment  

SRSWOR_HT CATCH 18 90 543997 54466 0.100 

c) Incomplete data, adjusted by post-stratification with POST5 

SRSWOR_POST CATCH 18 90 564206 40894 0.072 

d) Incomplete data, adjusted by regression estimation with GT  

SRSWOR_REG CATCH 18 90 647368 50166 0.077 

Regression estimation under strategy SRSWOR_REG (part d in the table) adjusted successfully the nonresponse 
bias in the HT based strategy SRSWOR_HT (part b) for the total estimate of CATCH. Post-stratification with 
variable POST5 (part c) was not successful in this case. Results on cv:s in parts b) and d) in the table indicate that 
the strategy SRSWOR_REG improved the efficiency of the estimation of the total of CATCH.  

In this favourable situation we did know the response mechanism completely, because it was created by 
ourselves. We wanted to demonstrate the power of a nonresponse adjustment technique when having access to 
an auxiliary variable that correlates strongly with the target variable: corr(CATCH,GT) = 0.56 in the population. 
In practice, the process that creates missingness in a sample survey is unknown. Therefore, it is important in the 
preparation of the sampling frame to include various potential auxiliary variables in the frame and further, in the 
data preparation phase to search for potential auxiliary data from official statistics and other reliable sources. In 
both cases, the original sample data set must contain the values of the auxiliary variables that are planned to be 
used in the analysis phase. 

Simulation experiment. We carried out a small simulation experiment in order to verify the capacity of the 
applied nonresponse adjustment method in the reduction of the bias due to nonresponse in the case considered. 
We generated unit nonresponse in the population data set SIMPOP with the following scenario. A response 
mechanism dependent on the auxiliary variable GT was defined such that the probability of non-response for 
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variable CATCH was higher for larger values of GT than for smaller values. GT was chosen because the values 
were known for all population vessels. Nonresponse within SIMPOP was generated by Poisson PPS sampling 

with two expected non-respondent cases in a Poisson sample of size 𝐸(𝑛𝑠) = 20 elements. We then drew 

𝐾 = 100 independent SRSWOR samples of size 𝑛 = 20 vessels from SIMPOP, computed the estimated total, 

standard error and coefficient of variation for the regression estimator 𝑡̂𝑅𝐸𝐺 of CATCH total under the 

SRSWOR_REG strategy and the HT estimator 𝑡̂𝐻𝑇 under the SRSWOR_HT strategy from each sample. Finally, 
the averages of the desired statistics over the 100 samples were computed. The results are in Table 5.2.  

The average of the estimated CATCH totals computed over the 100 incomplete samples by HT estimation with 
no adjustment for nonresponse (case a) is much smaller than the true value. This indicates serious negative bias 
(too small value) for the HT total estimate because of the informative nonresponse i.e. the correlation between 
target variable CATCH and the response mechanism. Regression estimation with GT as the auxiliary variable 
(case b) shows that the method adjusted effectively the nonresponse bias: after adjustment the average of total 
estimates was close to the true value. When comparing with results for the full sample (case c), it is noted that 
the REG method also is efficient; coefficients of variation (7% and 6%) are close. This is due to the significant 
correlation between CATCH and GT. 

In the simulation experiment we had a strong auxiliary variable GT at our disposal. The piece of auxiliary data 
incorporated in regression estimation was the known population total of GT. The adjustment by regression 
estimation appeared to reduce substantially the nonresponse bias that was present in the unadjusted HT estimate. 

Table 5.2 Means of estimated totals, standard errors and coefficients of variation for CATCH from 𝐾 = 100 

simulated SRSWOR samples of size 𝑛 = 20 contaminated by unit nonresponse.  

Strategy VarName Replicates 

Averages over simulations 

SumWgt 

n 

Original 

n 

Non- 
Missing 

n 

Missing 

 

Total 

𝑡̂ 

StdDev 

𝑠. 𝑒(𝑡̂) 

CV 

𝑐𝑣(𝑡̂) 

a) Unadjusted estimates 

SRSWOR_HT CATCH 100 80.6 20 16.12 3.88 503622 41366 0.082553 

b) Estimates adjusted for nonresponse 

SRSWOR_REG CATCH 100 80.6 20 16.12 3.88 633428 43934 0.069640 

c) Full sample estimates (no nonresponse) 

SRSWOR_REG CATCH 100 100 20 20 0 625882 37931 0.060743 

True total       624036   
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6 Analysis of economic variables 

6.1 Estimation strategies 
This chapter concentrates on the analysis of selected economic variables under several estimation strategies for 
the SIMPOP population. Variables are VALUE, TOTAL_COSTS and LABOR. We discuss strategies where the 
auxiliary data are incorporated in the sampling design or, alternatively, in the estimation design. The main 
auxiliary variable is GT (vessel tonnage), whose values are taken from the sampling frame. Variables DAS (days 
at sea) and DOM01 (type of fishing) are additional auxiliary variables whose population totals are assumed 
available.  

For VALUE, TOTAL_COSTS and LABOR, we operate with the SIMPOP population of 𝑁 = 100 active 

vessels. We use the entire SIMPOP of 𝑁 = 120 vessels when dealing with the variable ACTIVITY. Single-
sample realizations of the strategies are considered first and are supplemented by small simulation experiments 
for multiple samples. 

The following estimation strategies are applied. 

Table 6.1 Strategies for the analysis of economic variables. 

 Strategy Sampling design Estimation design 

(1) SRSWOR_HT Simple random sampling without replacement HT estimation 

(2) PPS_WOR_HT 
PPS without replacement sampling  

GT as size variable 
HT estimation 

(3) SRSWOR_RAT SRSWOR  
Ratio estimation  

GT as auxiliary variable 

(4) SRSWOR_REG SRSWOR  
Regression estimation  

GT as auxiliary variable 

(5) SRSWOR_REG SRSWOR  

Regression estimation 

GT, DAS and DOM01 as auxiliary 

variables 

The first strategy is the reference strategy. In SRSWOR, inclusion probabilities are constants. PPS_SYS with GT 
as the size variable produces larger (measured in GT) inclusion probabilities for large vessels and smaller for 
small vessels.  

Note that essentially, the same auxiliary information is supplied for strategies (2) to (4), but in different ways. In 
the PPS_WOR strategy (2), the auxiliary data are incorporated in the sampling design. A single size variable only 
is allowed. GT values are required for all population vessels. 

Strategies (3), (4) and (5) rely on model-assisted ratio and regression methods under simple random sampling. In 
these methods, auxiliary data are incorporated in the estimation design; the sampling phase does not involve any 
auxiliary information. Strategies (3) and (4) use a single auxiliary variable (GT), whereas the strategy (5) uses three 
auxiliary variables: GT, DAS and DOM01. The important option of several auxiliary variables indicates the 
flexibility of model-assisted strategies. The population totals of these variables constitute the auxiliary data 
needed.  Table 6.2 contains the auxiliary variable totals for the model-assisted methods. 



61 

 

Table 6.2 Auxiliary totals for model-assisted estimators. 

GT 

𝑡𝑥1
 

DAS 

𝑡𝑥2
 

DOM01 

𝑡𝑥3
 

32896.4 18308 30 

 

6.2 Variable VALUE 

6.2.1 Study setting 

The variable VALUE describes the total value of landings (in Euro) during the reference period. We examine the 
performance of strategies of Table 6.1 for the estimation of the population total of VALUE. Measurements for 
variable VALUE are obtained from samples of different size. Sample sizes n = 5 and n = 20 vessels are used first 
for the single sample cases and then for multiple samples generated by simulation experiments.  

6.2.2 Efficiency comparison  

Strategies of Table 6.1 are applied for SRSWOR and PPSWOR samples drawn from the SIMPOP population of 
active vessels. Table 6.3 presents results for the various strategies. Our main interest in the efficiency of each 
strategy, measured by coefficient of variation (cv = StdDev/Total) of an estimated total of VALUE.  

Clear differences in efficiency are observed between the methods. The reference SRSWOR_HT strategy (1) 
shows largest coefficient of variation (cv), for both sample sizes, as expected. Incorporation of auxiliary 
information, either in the sampling design or in the estimation design, tends to improve efficiency. For samples 

of size 𝑛 = 5, PPS_WOR_HT with 𝑐𝑣 = 13.5% shows best precision. For sample size 𝑛 = 20, differences 
between strategies (2)-(4) are minor. Of these strategies, PPSWOR_HT is not anymore the best strategy; the 
model-assisted strategies (3) and (4) show better precision. In these strategies, a single auxiliary variable GT is 
used. The model-assisted regression strategy (5), SRSWOR_REG under a SRSWOR sample, incorporates the 

three auxiliary variable totals of Table 6.2 in the estimation procedure. This strategy attains efficiency of 𝑐𝑣 =
3.3%, which is much smaller than cv:s of the other strategies.  
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Table 6.3 Estimation results for VALUE under five estimation strategies. 

Variable n 
Sum of  

Weights 

Total 

𝑡̂ 

Std Dev 

𝑠. 𝑒(𝑡)̂ 
95% CL  

Coeff of Var 

𝑐𝑣(𝑡)̂ 

Sample size n = 5 

(1) SRSWOR_HT 5 100.000000 255818777 68043670 66899263 444738291 0.265984 

(2) PPSWOR_HT 5 104.874286 184743304 25004620 115319349 254167259 0.135348 

(3) SRSWOR_RAT 5 100.000000 242130000 53522592 93528509 390730000 0.221050 

(4) SRSWOR_REG 5 100.000000 211780000 51784330 68007133 355560000 0.244520 

(5) SRSWOR_REG 5 100.000000 201460000 39171930 92697347 310210000 0.194440 

Sample size n = 20 

(1) SRSWOR_HT 20 100.000000 201253849 17082556 165499648 237008050 0.084881 

(2) PPSWOR_HT 20 101.573826 223968852 17827256 186655977 261281727 0.079597 

(3) SRSWOR_RAT 20 100.000000 211120000 14885980 179960000 242280000 0.070509 

(4) SRSWOR_REG 20 100.000000 210960000 15077603 179400000 242520000 0.071472 

(5) SRSWOR_REG 20 100.000000 195200000 6383043 181840000 208560000 0.032700 

True total   194676172     

 

6.2.3 Simulation experiments  

Our results in this far are based on single sample realizations from SIMPOP. We next examine the behaviour of 

the strategies by a small simulation experiment. Table 6.4 contains average estimation results from 𝐾 = 100 
simulated samples for the five strategies, computed with PROC SURVEYSELECT, SURVEYMEANS and 
SURVEYREG. 

Estimation results from simulation experiments in Table 6.4 show that the use of a single auxiliary variable GT 
for total estimation of VALUE in strategies (2), (3) and (4) do not improve efficiency over the reference strategy 
(1) that does not incorporate auxiliary information. Coefficients of variation for these methods are of similar size, 
in both sample sizes. Note that VALUE and GT are not strongly correlated: corr(VALUE,GT) = 0.28 in the 
population. Strategy SRSWOR_REG with three auxiliary variables GT, DAS and DOM01 produces smallest cv:s 

in both sample sizes: 14% for 𝑛 = 5 and 4.7% for 𝑛 = 20. This model-assisted strategy clearly outperforms the 
other strategies, in both sample sizes, confirming results from the single-sample experiments. The cost efficiency 
of the strategy is demonstrated by the fact that with SRSWOR_HT strategy, a sample size of 50 sample vessels 
would be required to attain the 4.5% efficiency of the SRSWOR_REG strategy with 20 vessels. 
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Table 6.4 Means of estimated totals, standard errors and coefficients of variation for five strategies for VALUE 
from K = 100 simulated samples of size n = 5 and n = 20 vessels from SIMPOP of N = 100 vessels.   

 
AuxVar Replicates 

Averages over simulations 

SumWgt n Total StdDev CV 

Sample size n = 5 

(1) SRSWOR_HT none 100 100.000000 5 197242485 35762439 0.178504 

(2) PPSWOR_HT GT 100 98.901065 

 

5 197469817 35691713 0.178674 

(3) SRSWOR_RAT GT 100 100.000000 5 194130000 34342342 0.174920 

(4) SRSWOR_REG GT 100 100.000000 5 195110000 38964736 0.198670 

(5) SRSWOR_REG GT, DAS, DOM01 100 100.000000 5 195200000 24544768 0.141860 

Sample size n = 20 

(1) SRSWOR_HT none 100 100.000000 20 196106848 17424625 0.088691 

(2) PPSWOR_HT GT 100 100.168244 

 

20 196200908 17288292 0.087867 

(3) SRSWOR_RAT GT 100 100.000000 20 194270000 17198526 0.088436 

(4) SRSWOR_REG GT 100 100.000000 20 196070000 17389926 0.088600 

(5) SRSWOR_REG GT, DAS, DOM01 100 100.000000 20 196000000 9180696 0.046850 

True total     194676172 

 

  

Conclusions. Over all methods in this exercise, regression estimation may be the best choice. The reasons are 
flexible tailoring for the purpose in the estimation phase, possibilities for improved efficiency over the other 
methods by using several auxiliary variables, and minimum requirements for the auxiliary variables, because the 
population totals of the variables only are needed.  

Model -assisted methods ratio and regression estimation require an access to the auxiliary variable totals that are 
incorporated in the estimation procedure. These totals are often obtained from reliable sources, such as official 
statistics. In addition, the sample data set must contain the unit-level values of auxiliary variables. It is important 
that auxiliary variables and their counterparts in the sample data set are based on exactly the same definitions. 
Auxiliary variables are often readily available in the sampling frame. It is straightforward to obtain reliable 
population totals and the sample values of the variables in this case. 
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6.3 Variable TOTAL_COSTS  

6.3.1 Study setting 

The variable TOTAL_COSTS describes the total costs of fishing efforts (in Euro) during the reference period. 
We examine the performance of the strategies in Table 4.1 for the estimation of the population total of 
TOTAL_COSTS. Measurements for TOTAL_COSTS are obtained from samples of different size. Sample sizes 
n = 5 and n = 20 are used first for the single sample cases and then for multiple samples generated by simulation 
experiments. 

6.3.2 Efficiency comparison  

Strategies of Table 6.1 are applied for SRSWOR and PPSWOR samples drawn from the SIMPOP population of 
active vessels. Table 6.5 presents results for the various strategies. Our main interest in the efficiency of each 
strategy, measured by coefficient of variation (cv) of an estimated total of TOTAL_COST.  

Table 6.5 Estimation results for TOTAL_COSTS under five estimation strategies. 

Variable n 
Sum of  

Weights 

Total 

𝑡̂ 

Std Dev 

𝑠. 𝑒(𝑡)̂ 
95% CL  

Coeff of Var 

𝑐𝑣(𝑡)̂ 

Sample size n = 5 

(1) SRSWOR_HT 5 100.000000 166160856 37627079 61691336.1 270630375 0.226450 

(2) PPSWOR_HT 5 90.784295 134885883 19346484 81171432.1 188600335 0.143429 

(3) SRSWOR_RAT 5 100.000000 156790000 27236195 81167924 232410000 0.173710 

(4) SRSWOR_REG 5 100.000000 138920000 25121898 69165766 208660000 0.180840 

(5) SRSWOR_REG 5 100.000000 130730000 15379475 88031200 173430000 0.117640 

Sample size n = 20 

(1) SRSWOR_HT 20 100.000000 126235083 9062905 107266205 145203961 0.071794 

(2) PPSWOR_HT 20 99.434022 131090256 9737997 110708393 151472119 0.074285 

(3) SRSWOR_RAT 20 100.000000 132750000 7317553 117440000 148070000 0.055121 

(4) SRSWOR_REG 20 100.000000 132730000 7433539 117170000 148290000 0.056006 

(5) SRSWOR_REG 20 100.000000 124980000 2575597 119590000 130370000 0.020608 

True total   125037964     

 

For TOTAL_COSTS, PPS sampling with GT as size variable and regression estimation with GT, DAS and 
DOM01 as the auxiliary variables in the assisting model for regression estimation show best efficiency for both 
sample sizes. The picture clarifies with samples of size n = 20 vessels. All three model-assisted estimators 
outperform the reference strategy as well as the PPS_WOR strategy. Strategy SRSWOR_REG with all three 
covariates attains best precision.  
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6.3.3 Simulation experiments 

We examine the behaviour of the strategies by a small simulation experiment. Table 6.6 presents average 
estimation results from K = 100 simulated samples for the strategies.  

For samples of size n = 5 vessels, the SRSWOR_REG strategy shows best efficiency; the differences between 
the other strategies are minor. The situation is the same for samples n = 20.  

Table 6.6 Means of estimated totals, standard errors and coefficients of variation for five strategies for 
TOTAL_COST from K = 100 simulated samples of size n = 5 and n = 20 vessels from SIMPOP of N = 100 
vessels.  

 
AuxVar Replicates 

Averages over simulations 

SumWgt n Total StdDev CV 

Sample size n = 5 

(1) SRSWOR_HT none 100 100.000000 5 126782133 18020029 0.139668 

(2) PPSWOR_HT GT 100 98.901065 5 126375410 17016332 0.132446 

(3) SRSWOR_RAT GT 100 100.000000 5 125230000 16068656 0.126050 

(4) SRSWOR_REG GT 100 100.000000 5 124950000 18149866 0.143670 

(5) SRSWOR_REG GT, DAS, DOM01 100 100.000000 5 124540000 8687201 0.072160 

Sample size n = 20 

(1) SRSWOR_HT none 100 100.000000 20 125560582 8921162 0.070776 

(2) PPSWOR_HT GT 100 100.168244 20 125845732 8372180 0.066279 

(3) SRSWOR_RAT GT 100 100.000000 20 124980000 8331410 0.066364 

(4) SRSWOR_REG GT 100 100.000000 20 125470000 8380551 0.066570 

(5) SRSWOR_REG GT, DAS, DOM01 100 100.000000 20 125390000 3944847 0.031403 

True total     125037964 

 

  

Conclusion. The  picture for TOTAL_COST seems pretty similar with the variable VALUE. This is explained 
by the high correlation of the two variables (0.98) and by the fact that their correlations with GT and DAS are 
reasonable large (Table 3.5). 
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6.4 Variable LABOR 

6.4.1 Study setting 

The variable LABOR describes the total costs of labour force (in Euro) during the reference period. We examine 
the performance of the strategies in Table 6.1 for the estimation of the population total of LABOR. 
Measurements for LABOR are obtained from samples of different size. Sample sizes n = 5 and n = 20 are used 
first for the single sample cases and then for multiple samples generated by simulation experiments.  

6.4.2 Efficiency comparison  

Strategies of Table 6.1 are applied for SRSWOR and PPSWOR samples drawn from the SIMPOP population of 
active vessels. Table 6.7 presents results for the various strategies. Our main interest in the efficiency of each 
strategy, measured by coefficient of variation (cv) of an estimated total of LABOR. 

Table 6.7 Estimation results for LABOR under five estimation strategies. 

Variable n 
Sum of  

Weights 

Total 

𝑡̂ 

Std Dev 

𝑠. 𝑒(𝑡)̂ 
95% CL  

Coeff of Var 

𝑐𝑣(𝑡)̂ 

Sample size n = 5 

(1) SRSWOR_HT 5 100.000000 51053745 14399614 11074006.5 91033482.6 0.282048 

(2) PPSWOR_HT 5 90.784295 46421214 7762403 24869327.4 67973100.2 0.167217 

(3) SRSWOR_RAT 5 100.000000 48239631 11691221 15779598.0 80699664.0 0.242360 

(4) SRSWOR_REG 5 100.000000 42497390 11704792 9999678.0 74995103.0 0.275420 

(5) SRSWOR_REG 5 100.000000 41559131 10142763 13398306.0 69719956.0 0.244060 

Sample size n = 20 

(1) SRSWOR_HT 20 100.000000 42716843 3818528 34724572.8 50709114.1 0.089392 

(2) PPSWOR_HT 20 99.434022 44588485 4444773 35285467.3 53891502.1 0.099684 

(3) SRSWOR_RAT 20 100.000000 44761805 3407868 37629055.0 51894554.0 0.076133 

(4) SRSWOR_REG 20 100.000000 44716084 3455566 37483501.0 51948666.0 0.077278 

(5) SRSWOR_REG 20 100.000000 41207347 1765763 37511563.0 44903132.0 0.042851 

True total   40914264     

For samples of size n = 5, the best strategy in efficiency is PPSWOR_HT, where the sample is drawn using PPS 
without replacement sampling with GT as the size variable. The model-assisted strategies ratio and regression 
estimation under SRSWOR sampling did not improve precision relative to the reference strategy SRSWOR_HT. 
For samples of size n = 20, the situation changes so that the model-assisted strategies outperform the reference 
strategy in efficiency, notably for regression estimation with three auxiliary variables.  
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6.4.3 Simulation experiments  

We examine the behaviour of the strategies by a small simulation experiment. Table 6.6 presents average 
estimation results from K = 100 simulated samples for the strategies.  

Table 6.8 Means of estimated totals, standard errors and coefficients of variation for five strategies for LABOR 
from K = 100 simulated samples of size n = 5 and n = 20 vessels from SIMPOP of N = 100 vessels.  

 
AuxVar Replicates 

Averages over simulations 

SumWgt n Total StdDev CV 

Sample size n = 5 

(1) SRSWOR_HT none 100 100.000000 5 41376736 8224349 0.196836 

(2) PPSWOR_HT GT 100 98.901065 5 41529430 8227161 0.197577 

(3) SRSWOR_RAT GT 100 100.000000 5 40635354 8061915 0.198120 

(4) SRSWOR_REG GT 100 100.000000 5 41142233 9155431 0.222410 

(5) SRSWOR_REG GT, DAS, DOM01 100 100.000000 5 41303501 6904558 0.211300 

Sample size n = 20 

(1) SRSWOR_HT none 100 100.000000 20 41301541 3917383 0.094881 

(2) PPSWOR_HT GT 100 100.168244 20 41219210 3926993 0.095134 

(3) SRSWOR_RAT GT 100 100.000000 20 40787728 3922377 0.096401 

(4) SRSWOR_REG GT 100 100.000000 20 41315348 3974518 0.096323 

(5) SRSWOR_REG GT, DAS, DOM01 100 100.000000 20 41323075 2350461 0.057016 

True total     40914264   

 

Conclusion. For samples of size n = 5 vessels , none of the methods that incorporate auxiliary information 
either in the sampling design with PPS sampling or with model-assisted methods in the estimation design do not 
improve precision over the reference strategy. For the last method with three auxiliaries in the model, the small 
sample size seems to become too small for reliable estimation because the estimates may become instable. The 
correlation of LABOR with GT is the weakest (0.22) among the target variables VALUE and TOTAL_COST 
and this might explain at least partly the results. For samples with size n = 20 the picture changes so that 
regression estimation with the three auxiliary variables GT, DAS and DOM01 appears most efficient with an 
average coefficient of variation of 5.7%, when compared with the other strategies of efficiency about 9.5%. 
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6.5 Variable ACTIVITY 

6.5.1 Study setting 

The binary variable ACTIVITY describes whether a vessel has been active in fishing (=1) or not (=0) during the 
reference period. In this exercise, ACTIVITY is taken as one of our target variables whose values have been 
measured from the sample vessels in the survey. We now operate with the entire SIMPOP population of N = 
120 vessels. The following estimation strategies are applied. 

Table 6.9 Strategies for the estimation of the total number of active vessels. 

 Strategy Sampling design Estimation design 

(1) SRSWOR_HT Simple random sampling without replacement 

SIMPOP N=120 sorted in random order 

HT estimation 

(2) SYS_HT Systematic sampling  

SIMPOP N=120 sorted by GT 

HT estimation 

(3) PPS_SYS_HT Systematic PPS sampling  

SIMPOP N=120 sorted in random order  

GT as size variable 

HT estimation 

(4) SRSWOR_RAT SRSWOR  

SIMPOP N=120 sorted in random order 

Ratio estimation  

GT as auxiliary variable 

(5) SRSWOR_REG SRSWOR  

SIMPOP N=120 sorted in random order 

Regression estimation  

GT as auxiliary variable 

The first strategy is the reference strategy. In strategies (2) and (3), the auxiliary data are incorporated in the 
sampling design. Strategies (3) and (4) rely on model-assisted ratio and regression methods under simple random 
sampling. In these methods, auxiliary data are used in the estimation phase; the sampling phase does not involve 
any auxiliary information.  

In SRSWOR and SYS sampling, inclusion probabilities are constants. PPS_SYS with GT as the size variable 
produces larger (measured in GT) inclusion probabilities for large vessels and smaller for small vessels. Sample 
size n = 20 is used first for the single sample realizations and then, for multiple samples obtained by simulation.  

6.5.2 Efficiency comparison  

Results for ACTIVITY total from the single sample experiment are collected in Table 6.10. Strategy (1) is the 
reference strategy; no auxiliary data are used. Sorting the population frame by GT followed by systematic 
sampling in strategy (2) does not improve precision. Sorting is often used for good coverage over the population 
in a systematic sample. The realized samples in (1) and (2) are different, but the estimates are equal. This is 
because there are exactly two non-active observations in both samples. PPS_SYS_HT seems not to be a good 
choice in this case: coefficient of variation for (3) is larger than for the other strategies. 

Model-assisted ratio and regression estimation strategies for the SRSWOR sample in strategy (1) are well 
competitive with the reference strategy. The benefit in (4) and (5) is that aggregate-level auxiliary data (population 
total of GT) only are needed, whereas in (2) and (3), unit-level auxiliary data are required. Ratio estimation 
SRSWOR_RAT gives best accuracy in this experiment.  
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Table 6.10 Estimation results for ACTIVITY under five different estimation strategies for samples of size n = 20 
elements. 

Strategy n 
Sum of 

Weights 

Total 

𝑡̂ 

Std Dev 

𝑠. 𝑒(𝑡)̂ 
95% CL  

Coeff of Var 

𝑐𝑣(𝑡)̂ 

(1) SRSWOR_HT 20 120.000 108.00000 7.539370 92.2199165 123.780083 0.069809 

(2) SYS_HT 20 120.000 108.00000 7.539370 92.2199165 123.780083 0.069809 

(3) PPS_SYS_HT 20 122.687 104.12294 9.714304 83.7906707 124.455216 0.093296 

(4) SRSWOR_RAT 20 120.000 105.16000 6.721000 91.0914000 119.230000 0.063913 

(5) SRSWOR_REG 20 120.000 107.81000 7.696500 91.7039000 123.920000 0.071387 

True total   100     

 

6.5.3 Simulation experiments 

The results above only consider the single sample realizations from SIMPOP. Let us examine closer the 
behaviour of the strategies by a small simulation experiment. Table 6.11 contains average estimation results from 
K = 100 simulated samples for the five strategies, computed with PROC SURVEYSELECT, SURVEYMEANS 
and SURVEYREG. 

Ratio estimation for a SRSWOR sample is of the best in efficiency and systematic PPS sampling is the worst. 
However, differences between the methods are minor. Note that essentially, the same auxiliary information was 
supplied for strategies (2) to (5), but in different ways. In (2) and (3), GT values are required for all population 
vessels, but in (4) and (5), population total of GT only is needed. This fundamental difference indicates the 
flexibility of model-assisted strategies. 

Table 6.11 Means of estimated totals, standard errors and coefficients of variation for five strategies for 
ACTIVITY from K = 100 simulated samples of size n = 20 vessels from SIMPOP of N = 120 vessels.  

 
AuxVar Replicates 

Averages over simulations 

SumWgt n Total StdDev CV 

(1) SRSWOR_HT none 100 120.000000 20 99.780000 8.851161 0.091158 

(2) SYS_HT none 100 120.000000 20 100.680000 8.695351 0.088989 

(3) PPS_SYS_HT GT 100 120.345357 20 100.955378 8.954131 0.093647 

(4) SRSWOR_RAT GT 100 120.000000 20 98.749600 8.556004 0.088489 

(5) SRSWOR_REG GT 100 120.000000 20 100.820000 8.830300 0.090218 

True total     100   

Conclusion. Results for ACTIVITY do not follow the same pattern than those for the other target variables of 
this chapter. A reason might be a different correlation structure of ACTIVITY with the auxiliary variables (Table 
6.12). It is noted that ACTIVITY correlates weakly only with all three auxiliary variables. The strongest 
correlation is with GT, the auxiliary variable used in PPS sampling and model-assisted methods. This example 
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thus demonstrates that it is important to invest efforts to search and test for the suitability of various auxiliary 
variables for a given estimation task. 

Table 6.12. Correlation of ACTIVITY with auxiliary variables LENGTH, GT and kW (all vessels, N = 120). 

Pearson Correlation Coefficients  

  LENGTH GT kW 

ACTIVITY 

 

0.10497 

 

0.09685 

 

0.08820 

 

It should be noted that we are here working with a binary target variable. This is somewhat problematic from 
modeling point of view, because the assisting models in strategies (4) and (5) are based on a linear regression 
model. A logistic model would be a better justified model formulation for this case, suggesting the more general 
GREG (generalized regression) family estimators (see e.g. Lehtonen & Veijanen 2009). Numerically, however, 
the results might not change much because the mean (0.37) of ACTIVITY is not so far from 0.5.  

6.6 Conclusions 
Four important target variables were analysed under a variety of typical study settings in fisheries statistics. The 
aim was to examine to what extent it is possible to improve statistical efficiency of total estimates of the selected 
economic variables by using auxiliary information on the vessel population in the sampling and estimation 
phases. Simulation experiments were conducted to supplement the single-sample analyses. 

We discussed strategies where the auxiliary data were incorporated in the sampling design or, alternatively, in the 
estimation design. The main auxiliary variable was GT (vessel tonnage), whose values were taken from the 
sampling frame. Variables DAS (days at sea) and DOM01 (type of fishing) were additional auxiliary variables 
whose population totals were assumed available. Strategies were SRS without replacement, systematic sampling 
and PPS without replacement sampling using GT as the size variable, where Horvitz-Thompson (HT) estimation 
design was used, and ratio and regression estimation design for a SRSWOR sample. In regression estimation, the 
case of three auxiliary variables was demonstrated in addition to the single covariate case. 

Over all strategies applied for the target variable VALUE, regression estimation may be the best choice. The 
reasons are flexible tailoring for the purpose in the estimation phase, possibilities for improved efficiency over 
other methods by using several auxiliary variables, and minimum requirements for the auxiliary variables, because 
the population totals of the variables only are needed as auxiliary data. Auxiliary variable totals that are needed in 
ratio and regression estimation are often obtained from reliable sources, such as official statistics. In addition, the 
sample data set must contain the unit-level values of auxiliary variables. It is important that auxiliary variables and 
their counterparts in the sample data set are based on exactly the same definitions. Auxiliary variables are often 
readily available in the sampling frame, and it is straightforward to obtain reliable population totals and the 
sample values of the variables in this case. If the auxiliary variables are obtained from different sources, it is 
important to examine the quality of sources in order to avoid the possible bias in estimates because of 
measurement errors. 

The  picture for TOTAL_COST seems pretty similar with the variable VALUE. This is explained by the high 
correlation of the two variables (0.98) and by the fact that their correlations with GT and DAS are reasonable 
large (Table 3.5). 

For the target variable LABOR, with samples of size n = 5 vessels , none of the methods that incorporate 
auxiliary information either in the sampling design with PPS sampling or with model-assisted methods in the 
estimation design do not improve precision over the reference strategy. For the last method with three auxiliaries 
in the model, the small sample size seems to become too small for reliable estimation because the estimates may 
become instable. The correlation of LABOR with GT is the weakest (0.22) among the target variables VALUE 
and TOTAL_COST and this might explain at least partly the results. For samples with size n = 20 the picture 
changes so that regression estimation with the three auxiliary variables GT, DAS and DOM01 appears most 
efficient with an average coefficient of variation of 5.7%, when compared with the other strategies of efficiency 
about 9.5%. 
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For the economic variables analysed here it seems that model-assisted methods, regression estimation with a 
multivariate model in particular, might offer a reasonable choice with respect to efficiency of estimation, when 
compared with the other methods. 

Results for ACTIVITY do not follow the same pattern than those for the economic target variables of this 
chapter. A reason might be a different correlation structure of ACTIVITY with the auxiliary variables (Table 
6.12). It is noted that ACTIVITY correlates weakly only with the auxiliary variables LENGTH, GT and kW. The 
strongest correlation is with GT, the auxiliary variable used in PPS sampling and model-assisted methods. 
Moreover, as a binary variable ACTIVITY might require a different model formulation than the linear model for 
the model-assisted methods. This example also demonstrates that it is important to invest efforts to search and 
test for the suitability of various auxiliary variables for a given estimation task.  
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7 General conclusions 
The aim of the handbook was to introduce modern survey analysis methodology for the purposes of fisheries 
statistics and to examine to what extent it is possible to improve statistical efficiency of total estimates by using 
auxiliary information and tools of statistical modeling. Efficiency was measured by coefficient of variation of 
total estimate. Coefficient of variation is defined as the ratio of standard error estimate of the total with the total 
estimate itself. The measure is scale-free and suits well for comparing total estimates. Simulation experiments 
were conducted to supplement the single-sample analyses. 

Our conceptual framework was build on the concepts of sampling design and estimation design, defining the 
estimation strategy for the survey. We discussed two types of estimation strategies. In the first type, the auxiliary 
information was introduced in the sampling design by probability proportional to size (PPS) sampling or 
stratified sampling, and the estimation design relied on the traditional expansion or HT estimation. Auxiliary 
variables for these strategies such as PPS size variable (e.g. vessel tonnage) and stratification variables had to be 
available in the frame population. This type of strategies are common in fisheries statistics. Their strengths are 
long tradition in official statistics, firm theoretical basis, technical simplicity in the sampling and estimation 
phases, availability of reliable software, and improved statistical efficiency over the reference strategy for 
variables for which the sampling design was optimized. We demonstrated in chapters 3 and 6 the ways to use 
auxiliary information in the sampling phase. Simple random sampling was used as the reference strategy. Because 
methods based on sample weighting are used in the estimation phase, the approach is easily implemented in the 
production work.  

Weaknesses of the strategy are the possible lack of unit-level auxiliary variables in the sampling frame that are 
powerful enough for efficiency improvement for the desired set of target variables in PPS or stratified sampling, 
the possibility of low benefit in efficiency for some target variables, and a risk of method failure for some target 
variables, e.g. under PPS sampling. In stratification, multiple stratification variables can be used, but in PPS 
sampling, a restriction is that a single auxiliary variable only can be used as size variable. In this approach, the 
main investment of efforts is in the sampling phase of the survey, when constructing a high quality frame 
population rich enough of variables for sampling purposes.  

The second type of strategies comprise methods that use the auxiliary information in the estimation phase, under 
a given sampling design. This set includes several traditional design-based model-assisted estimators, which 
incorporate the auxiliary data in the estimation procedure of a total. In the handbook, we focused on ratio and 
regression estimation and post-stratification, both based on linear fixed-effects regression models. Requirements 
for auxiliary information are different to the first type of strategies. In model-assisted methods, the population or 
sub-population (domain) totals of the auxiliary variables, or population distributions of categorical auxiliary 
variables, are required, and their unit-level measurements are needed in the sample data set. Typically, the 
sampling design is a compromise design involving for example simple random sampling without replacement, 
possibly supplemented with stratification of the population and an appropriate allocation scheme. Stratification 
can be applied for example for compromise sample allocation schemes that meet precision requirements for 
domains both with small and large sample sizes. This type of strategies would provide useful options in fisheries 
statistics. Benefits of the approach are flexibility so that estimation designs can be tailored efficient for a set of 
diverse target variables if desired, the use of multivariate assisting models with several auxiliary variables, and the 
fact that aggregate auxiliary data only are needed for the model-assisted estimators. We demonstrated these 
properties in chapters 4 and 6.  

It is important that the auxiliary variables and their sample counterparts are based on exactly the same 
definitions. This is possible if the data source is the same for both the auxiliary and sample data, for example a 
statistical register. If the auxiliary variables are obtained from different sources, it is important to examine the 
quality of sources in order to avoid the possible bias in estimates because of different measurement and possible 
measurement errors. The tailoring approach might increase staff expertise requirements, because good 
capabilities for statistical modelling are important. This might not be a problem if high-level statisticians are 
available in the agency. In this approach, the main investment of efforts is in the estimation phase of the survey. 
To ensure success in the estimation phase, care must be taken to have access to either high quality aggregate 
auxiliary data or (even better), to have rich selection of auxiliary variables readily available in the frame 
population data set, taken from statistical register and other reliable sources. 
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Supplementing the tailoring approach, a compromise estimation strategy is often adopted in routine official 
statistics production work. Because model-assisted estimators discussed in the handbook can be expressed as 
calibration estimators, an overall strategy for production purposes can be introduced by creating multi-purpose 
calibrated weights for a large set of target variables of a survey. A reasonable set of several auxiliary variables can 
then be included in the calibration machinery. The calibrated weights applied to the sample values of the auxiliary 
variables reproduce the known population (or domain) totals or distributions. This property of coherence is often 
appreciated in official statistics. A calibrated estimator for the total of a given target variable will be more precise 
than an estimator for the reference SRS strategy, if some of the auxiliary variables in the calibration apparatus 
correlate with the target variable. This property can also be used in adjusting for the possible selection bias 
because of unit nonresponse, if some of the auxiliaries correlate with the target variable. This was demonstrated 
in Chapter 5. Because the methodology is based on weighting (with multipurpose calibration weights) and thus 
resembles the first type weighting strategies, the staff requirements also are similar. Weaknesses of this approach 
might be the lack of suitable and powerful auxiliary variables for efficiency improvement for a large set of target 
variables, overly complicated model formulation and over-fitting, and the possible lack of careful model 
diagnostics. 

The handbook also offers materials for considering sample size determination for a survey. The budget 
restrictions and the adopted sampling and estimation strategies set the framework for sample size optimization. 
With clever use of auxiliary information in the sampling and estimation phases, it is possible to attain the 
precision requirements with a smaller sample size, when compared with a strategy that relies solely on simple 
random sampling and related estimation, leading to improved cost efficiency.  

Survey quality is a complex phenomenon relating to all stages of the survey process. In the context of the 
European Statistical System, a number of quality criteria have been defined (see e.g. 
https://ec.europa.eu/eurostat/web/quality/). The framework of total quality management provides a useful 
approach for assessing the overall quality of a survey. Biemer and Lyberg (2003) define the goal of survey quality 
management as finding a balance between different error components so that the total survey error is as small as 
possible while considering the costs of improvements in different stages and the size of the budget. For the total 
survey error framework in practice see e.g. Biemer et al. (2017). 

In the handbook we have concentrated on the measurement and improvement of accuracy of the survey results, 
which is one of the most important quality criteria. In this context, the quality assessment and improvement of 
the sources of sample data and auxiliary data is crucial. This aspect is becoming increasingly important in the era 
of diverse, sometimes of poor quality, data sources becoming available and used for official statistics. 

 

  

https://ec.europa.eu/eurostat/web/quality/
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8 Case studies 

8.1 Italy 

8.1.1 Introduction 

The Italian case study represents a designed application of multivariate allocation in stratified PPS sampling and 
estimation for population subgroups. 

The sample unit is the single vessel and this unit is selected from the Vessel Register, which also represents the 
frame population.  

The sampling is of a stratified nature in that the fishing vessels of the fleet are divided into homogenous groups 
based on suitable variables and independent samples are taken from each of these strata (see Section 3.6). 

The strata guarantee, as far as possible, that the vessels are homogeneous in terms of productive characteristics 
and socio-economic structure. For this reason, the criterion for delineating the strata as homogeneously as 
possible is based on the following three variables: 

 Stratification variable 1: geographical (e.g. FAO Geographical Sub Areas) 

 Stratification variable 2: technical (e.g. prevalent fishing technique) 

 Stratification variable 3: dimensional (e.g. length of vessel) 

Stratification variables 1 and 3 are available in the sampling frame. Information on the prevalent fishing activity 
(stratification variable 2) come from field surveys carried out periodically since the implementation of the DCF 
and updated every quarter. In fact, more than 70% of the Italian fishing-vessel licences allow the use of more 
than one fishing system. The existence or otherwise of actual polyvalent activity have to be verified through 
analysis of information on logbooks and field interviews. This survey involves all the vessels in the fleet register, 
including those less than 12 meters. 

8.1.2 Multivariate allocation of sampling units 

The multivariate allocation method is implemented in the MAUSS-R software developed at ISTAT as described 
in https://www.istat.it/it/files/2011/02/user_and_methodological_manual.pdf  

The optimum sample number per stratum is defined according to Bethel’s procedure (1989), the vessels are 
selected using PPS methodology (Probability Proportional to Size) by applying the algorithm of Hanurav-
Vijayan. Bethel’s procedure (1989) is a mathematical algorithm to achieve the optimum sample allocation in a 
multivariate sample survey. Bethel and Hanurav-Vijayan PPS methods are reported and explained in sections 3.5 
and 3.6 of the main handbook text. 

A numerical example on the application of MAUSS-R for a specific target variable is reported in the following 
tables: 

Table 8.1 – Input file_1 for MAUSS-R 

o The first column (stratum) includes the codes for the stratum, defined as explained before: DM1 
(geographical subarea), DM2 (administrative region), DM3 (prevalent fishing technique, that in this case 
is “dredgers – DRB”), DOM4 (vessel length classes), DOM5-DOM7 different aggregations of 
stratification variables.  

o N = number of units in the frame population 
o M1 and M2 = average sample values for the variables “fuel costs” (M1) and “labour costs” (M2) 
o S1 and S2 = standard deviation of the sampling values for the variables “fuel costs” (S1) and “labour 

costs” (S2) 
o Cost = fieldwork costs in the stratum (cost per each interview). The variable cost of each stratum is set 

equal to one because there is no difference in cost between the different strata 
o Cens = 0, that is all the strata should be sampled (0 to be sampled, 1 otherwise). 

Table 8.2 - Input file_2 for MAUSS-R 

https://www.istat.it/it/files/2011/02/user_and_methodological_manual.pdf
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The second file contains the constraints on sampling errors. In this specific example, we set a constraint 
of 20% for both variables at the domain level DOM5 (GSA+fishing technique+vessel lengt class) and a 
constraint of 4% for both variables at the domain level DOM7 (total segment at national level, that is 
actually the segmentation required by EUMAP1). 

Table 8.3 – Output file for MAUSS-R 

The system produces as output the sample size per stratum as reported in Table 3. Using this tool the 
user is able to make the necessary adjustments to achieve the desired sample size or, conversely, to 
achieve the desired expected precision on target estimates. 

The manual to use MAUSS-R tool is available at the following web page: 

https://www.istat.it/en/methods-and-tools/methods-and-it-tools/design/design-tools/mauss-
r#Softwareanddocumentation-2. 

 

                                                      

1 Commission Implementing Decision n. 2016/1251 adopting a multiannual Union programme for the collection, 
management and use of data in the fisheries and aquaculture sectors for the period 2017-2019 

https://www.istat.it/en/methods-and-tools/methods-and-it-tools/design/design-tools/mauss-r#Softwareanddocumentation-2
https://www.istat.it/en/methods-and-tools/methods-and-it-tools/design/design-tools/mauss-r#Softwareanddocumentation-2
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Table 8.1 – Input file_1 for MAUSS-R 

STRATUM DOM1 DOM2 DOM3 DOM4 DOM5 DOM6 DOM7 N M1 S1 M2 S2 Cost Cens 

1 9 LAZIO DRB VL1218 9DRBVL1218 DRBVL1218 1 24 2666 2131 14725 7555 1 0 

30 10 CAMPANIA DRB VL1218 10DRBVL1218 DRBVL1218 1 14 6356 2279 12379 6157 1 0 

65 17 ABRUZZO DRB VL1218 17DRBVL1218 DRBVL1218 1 82 2307 713 13587 3907 1 0 

66 17 ABRUZZO DRB VL1218 17DRBVL1218 DRBVL1218 1 20 2307 713 13587 3907 1 0 

73 17 E.ROMAGNA DRB VL1218 17DRBVL1218 DRBVL1218 1 18 5379 1369 21108 9582 1 0 

74 17 E.ROMAGNA DRB VL1218 17DRBVL1218 DRBVL1218 1 36 7488 913 54880 5577 1 0 

84 17 F.V.GIULIA DRB VL1218 17DRBVL1218 DRBVL1218 1 22 7930 851 14512 13494 1 0 

85 17 F.V.GIULIA DRB VL1218 17DRBVL1218 DRBVL1218 1 20 7190 3 26205 1 1 0 

92 17 MARCHE DRB VL1218 17DRBVL1218 DRBVL1218 1 74 8929 1039 31636 16912 1 0 

93 17 MARCHE DRB VL1218 17DRBVL1218 DRBVL1218 1 23 5883 923 21626 2242 1 0 

94 17 MARCHE DRB VL1218 17DRBVL1218 DRBVL1218 1 65 8269 1568 57668 13264 1 0 

95 17 MARCHE DRB VL1218 17DRBVL1218 DRBVL1218 1 58 13270 317 29015 1022 1 0 

104 17 MOLISE DRB VL1218 17DRBVL1218 DRBVL1218 1 10 4263 410 7922 477 1 0 

110 17 VENETO DRB VL1218 17DRBVL1218 DRBVL1218 1 57 8150 824 28281 126 1 0 

111 17 VENETO DRB VL1218 17DRBVL1218 DRBVL1218 1 24 6865 665 24594 5791 1 0 

112 17 VENETO DRB VL1218 17DRBVL1218 DRBVL1218 1 49 5857 2 15916 8 1 0 

113 17 VENETO DRB VL1218 17DRBVL1218 DRBVL1218 1 34 7212 19 29925 11 1 0 

123 18 PUGLIA Nord DRB VL1218 18DRBVL1218 DRBVL1218 1 25 2416 361 18977 2268 1 0 

124 18 PUGLIA Nord DRB VL1218 18DRBVL1218 DRBVL1218 1 50 7655 2940 12348 8326 1 0 

Table 8.2 - Input file_2 for MAUSS-R 

DOM CV1 CV2 

DOM1 1 1 

DOM2 1 1 

DOM3 1 1 

DOM4 1 1 

DOM5 0.2 0.2 

DOM6 1 1 

DOM7 0.04 0.04 
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Table 8.3 – Output file for MAUSS-R 

STRATUM DOM1 DOM2 DOM3 DOM4 n 

1 9 LAZIO DRB VL1218 10 

30 10 CAMPANIA DRB VL1218 5 

65 17 ABRUZZO DRB VL1218 3 

66 17 ABRUZZO DRB VL1218 2 

73 17 E.ROMAGNA DRB VL1218 2 

74 17 E.ROMAGNA DRB VL1218 2 

84 17 F.V.GIULIA DRB VL1218 2 

85 17 F.V.GIULIA DRB VL1218 2 

92 17 MARCHE DRB VL1218 8 

93 17 MARCHE DRB VL1218 2 

94 17 MARCHE DRB VL1218 6 

95 17 MARCHE DRB VL1218 2 

104 17 MOLISE DRB VL1218 3 

110 17 VENETO DRB VL1218 2 

111 17 VENETO DRB VL1218 2 

112 17 VENETO DRB VL1218 2 

113 17 VENETO DRB VL1218 2 

123 18 PUGLIA Nord DRB VL1218 2 

124 18 PUGLIA Nord DRB VL1218 4 

     

63 
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8.1.3 Random selection of sampling units 

The sample survey is repeated every year applying a panel survey with a 20% turnover rate. 

In the rotated samples the units to be observed are formed by replacing some statistical units in turn with 
randomly selected others. Often a rotation of the units in the sampling strategy is introduced with the 
purpose of limiting the cost of field work, reducing the amount of units to be identified before the survey. 
The organization and management of interviewers and data collection support tools can also benefit from the 
overlap with previous survey periods. The hypothesis behind this choice is that the maintenance of around 
80% of the units in the sample from one year to another greatly facilitates the identification and location of 
the units with a consequent reduction in costs and the time required to collect the data. 

Stratified random selection without unit substitution is performed by using the technique of permanent 
random numbers (PRN, Ohlsson 1995). 

In the following text box, the R script used to randomly extract the sampling units is reported. 

R script - Code for sample selection coordinated over time for longitudinal surveys 

The sampling package is used 

Line 4 sets the minimum number of units per stratum equal to 3 while in line 4 the rotation parameter is set 
at 20% 

In line 6 I read the fleet file while in line 8 it is ordered with respect to the stratum, descending by size 

In line 12 the sampling rate is calculated for each stratum 

Lines 13 to 18 are used to calculate the actual turnover rate in order to respect the population numbers and 
the minimum required for each stratum 

In row 21 the seed of generation of the random numbers (line 22) is kept fixed so that they are always 
reproduced the same (PRN) 

In line 22 the ratio between random numbers and inclusion probabilities proportional to the overall length is 
calculated 

In line 23 the archive is again sorted by stratum even with respect to this new indicator 

From line 24 to line 30 the only units that correspond to the actual rotation rate are selected in the sample 

Line 31 calculates a double entry table to check the actual number of units selected in each year and rotated 
from one year to another 

The output file is produced in line 32 

1  library(sampling) 

2  rm(list=ls(all=TRUE)) 

3  # pongo pari a 5 il numero minimo battelli x strato, e tasso rotazione 

4  minstr <- 3 

5  rotate <- 0.2 

6  flotta <- read.csv2("Flotta2018_v2.csv") 

7  colnames(flotta)[4] <- "c17" 

8  flotta <- flotta[order(flotta$Strato,-flotta$c17),]  

9  strnum <- as.data.frame.matrix(table(flotta$Strato,flotta$c17)) 

10  colnames(strnum) <- c("outs","ins") 

11  tots <- colSums(strnum)[1:2] 

12  tassoc <- tots[2]/(sum(tots)) 



79 

 

13  strnum$Strato <- as.numeric(rownames(strnum)) 

14  strnum$totN <- strnum$outs + strnum$ins 

15  strnum$ins[strnum$ins == 0] <- ceiling(strnum$totN[strnum$ins == 0] * tassoc) 

16  strnum$outs <- strnum$totN - strnum$ins 

17  strnum$totn <- pmin(pmax(strnum$ins,minstr),strnum$totN) 

18  strnum$rot  <- pmin(ceiling(strnum$totn * rotate),strnum$totN-strnum$totn) 

19  strnum$totlft <- tapply(flotta$LFT,flotta$Strato,FUN=sum) 

20  flotta2 <- merge(flotta,strnum[,c(3,5:7)],by = "Strato") 

21  set.seed(160964) 

22  flotta2$p <- runif(nrow(flotta2))/(flotta2$LFT/flotta2$totlft) 

23  flotta2 <- flotta2[order(flotta2$Strato,-flotta2$c17,flotta2$p),]  

24  flotta2$count <- 1 

25  for (i in 2:nrow(flotta2)) 

26  { 

27    ifelse(flotta2$Strato[i] - flotta2$Strato[i-1] == 0,flotta2$count[i] <- flotta2$count[i-1] + 1,1) 

28  } 

29  flotta2$c18 <- 0 

30  flotta2$c18[(flotta2$count > flotta2$rot) & (flotta2$count <= flotta2$totn + flotta2$rot)] <- 
1 

31  table(flotta2$c17,flotta2$c18) 

32  write.csv2(flotta2[,c(1:3,10)], file="campione18.csv", quote=F) 
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8.1.4 Estimation of the totals of interest by Horvitz-Thompson estimators 
and Sen-Yates-Grundy variance estimators 

To obtain an estimate of totals per stratum, the Horvitz-Thompson estimator is used, while the Sen-Yates-
Grundy formula is used to estimate the relative sampling error. Detailed explanations of these methods are 
reported in Chapter 3 of the Handbook. 

In this section, an application of the estimation procedure is presented. In the Italian survey, the size variable 
is the Length Overall (LFT) of the vessel. In the following table, the calculation of HT estimators for a single 
stratum is presented. The raising factor is calculated as: LFT/(lft*n). 

ID_vessel Stratum_code lft_vessel n_sample size LFT_tot stratum N_population Raising factor 

4345 1072 26.9 6 371.06 15 2.299009 

5148 1072 26.55 6 371.06 15 2.329316 

7075 1072 30.16 6 371.06 15 2.050508 

18561 1072 23.92 6 371.06 15 2.585424 

27472 1072 28.4 6 371.06 15 2.177582 

17247 1072 26.12 6 371.06 15 2.367662 

In the following text box the R script used to produce the final estimates according to the HT estimators in 
the PPS survey is reported. 

R script - Estimation of the totals 

library(survey) 

#setwd("~/Documents/Nisea") 

setwd("C:/Users/…") 

# reading  csv files 

datic <- read.table("sample values.csv",header=TRUE,sep=";",dec=",") 

vinco <- read.table("constraints.csv",header=TRUE,sep=";",dec=",") 

popol <- read.table("population.csv",header=TRUE,sep=";",dec=",") 

# create strvin with the indication of strata on the constraints 

strvin <- merge(vinco,strati2,by="Strato",all = TRUE) 

# definition of the sample design 

disegno  <- svydesign(ids = ~ 1,strata = ~Strato,data = datic,pps="brewer",fpc=~pinc) 

# estimations 

stitot0 <- 
svytotal(~FuelCost+Labour+Maint+Commerc+OtherFix+OtherVar+OtherRev+Invest+Subs+Depr+Deb
ts+FuelCons+Crew,disegno,deff=TRUE) 

stistr0 <- 
svyby(~FuelCost+Labour+Maint+Commerc+OtherFix+OtherVar+OtherRev+Invest+Subs+Depr+Debts
+FuelCons+Crew,~Strato,disegno,svytotal) 

write.table(stistr0,file="stistr0.csv",sep=";",dec=",") 
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In the following text box the R script used to produce the Sen-Yates-Grundy variance estimators is reported. 

R script - Sen-Yates-Grundy variance estimators 

#tempdir="C:/Users/….." 

library(data.table) 

campionari=fread(paste(tempdir,'campionari.csv',sep="/") ) 

pr_i=fread(paste(tempdir,'pr_i.csv',sep="/") ) 

pr_ij=fread(paste(tempdir,'pr_ij.csv',sep="/") ) 

strati=fread(paste(tempdir,'strati.csv',sep="/") ) 

setkey(campionari, batcod) 

setkey(pr_i, batcod) 

# check if there are batcod in samples not present in pr_i, in case the procedure returns a data.table with the 
indications of the errors 

if ( sum(campionari[,unique(batcod)] %in% pr_i[,batcod])  != nrow(campionari[,.N,by=batcod])  ) {  

   

  cv=data.table( batcod_in_campionari_not_in_pr_i=setdiff(campionari[,unique(batcod)], pr_i[,batcod]) ) 

   

} else {  

   

  strati_cod_variable_unique = pr_i[ campionari[,.(batcod, cod_variable)], .(batcod,cod_variable,strato)] 
[,.N,keyby=.(strato,cod_variable)][,N:=NULL] 

   

  pr_i_temp=pr_i[,list(batcod.x=batcod,pr_i.x=pr_i)] 

  setkey(pr_i_temp, batcod.x)   

  setkey(pr_ij, batcod.x) 

  pr_ij = pr_i_temp[pr_ij] 

   

  pr_i_temp=pr_i[,list(batcod.y=batcod,pr_i.y=pr_i)] 

  setkey(pr_i_temp, batcod.y)   

  setkey(pr_ij, batcod.y) 

  pr_ij = pr_i_temp[pr_ij] 

   

  setkey(pr_ij, strato) 

  setkey(strati_cod_variable_unique, strato) 

   

  pr_ij = strati_cod_variable_unique[pr_ij,allow.cartesian=TRUE, nomatch=0] 

   

  camp_temp=campionari[,list(batcod.x=batcod, cod_variable, values.x=values)] 

  setkey(camp_temp, batcod.x, cod_variable) 
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  setkey(pr_ij, batcod.x, cod_variable) 

  pr_ij = camp_temp[pr_ij] 

   

  camp_temp=campionari[,list(batcod.y=batcod, cod_variable, values.y=values)] 

  setkey(camp_temp, batcod.y, cod_variable) 

  setkey(pr_ij, batcod.y, cod_variable) 

  pr_ij = camp_temp[pr_ij] 

  pr_ij[is.na(values.x), values.x:=0] 

  pr_ij[is.na(values.y), values.y:=0]   

   

  campionari = pr_i[campionari, .(batcod,cod_variable,values,strato,pr_i)] 

  setkey(campionari, strato,cod_variable) 

  tot=campionari[,list( tot_values=sum(values/pr_i)), by=.(strato,cod_variable) ]   

  setkey(pr_ij, strato,cod_variable) 

  var=pr_ij[,list( var_values= sum( (pr_i.x * pr_i.y / pr_xy - 1) * (values.x/pr_i.x - values.y/pr_i.y)^2 )), 
by=.(strato,cod_variable)] 

   

  cv_strato=var[tot][var_values>=0] 

  cv_strato[, cv:=ifelse(tot_values==0,0,sqrt(var_values)/tot_values)] 

 

 

  # this part is executed only if there are var <0. In this case, the cv calculation is performed with ccs: 

  if (nrow(var[var_values<0])!=0)   { 

     

    str_cod_variable_per_ccs=var[var_values<0,.(strato, cod_variable)] 

     

    setkey(str_cod_variable_per_ccs, strato) 

    setkey(pr_i,strato ) 

    pr_i=pr_i[str_cod_variable_per_ccs] 

    camp_temp=campionari[,list(batcod,cod_variable,values)] 

    setkey(camp_temp, batcod,cod_variable) 

    setkey(pr_i, batcod,cod_variable) 

    pr_i=camp_temp[pr_i] 

    pr_i[is.na(values), values:=0] 

     

    cv_strato_ccs=pr_i[,list(m=mean(values), s2=var(values)), keyby=.(strato,cod_variable)] 

    setkey(strati, strato)     

    cv_strato_ccs=strati[cv_strato_ccs] 
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    cv_strato_ccs=cv_strato_ccs[,.(strato,cod_variable, tot_values= m * N, var_values=(N^2 * (1-n/N)/n) * 
s2) ] 

    cv_strato_ccs[,cv:=ifelse(tot_values==0, 0, sqrt(var_values)/(tot_values) ) ] 

    cv_strato_ccs = cv_strato_ccs[,.(strato,cod_variable,cv)] 

    setkey(cv_strato_ccs, strato,cod_variable) 

    cv_strato_ccs=tot[cv_strato_ccs,.(strato,cod_variable,tot_values,cv)] 

    cv_strato_ccs = cv_strato_ccs[, var_values:=(cv*tot_values)^2][,names(cv_strato), with=F] 

    cv_strato=rbindlist( list(cv_strato, cv_strato_ccs) ) 

     

  }  

   

  cv_totale=cv_strato[,.(strato=0,tot_values=sum(tot_values), var_values=sum( (tot_values*cv)^2 ) 
),by='cod_variable'] 

  cv_totale[tot_values>0,cv:=sqrt(var_values)/tot_values] 

  cv_totale[is.na(cv), cv:=0] 

   

  cv=rbindlist( list(cv_strato[,.(cod_variable, strato, tot=tot_values ,cv)], cv_totale[,.(cod_variable, strato, 
tot=tot_values ,cv)] ) ) 

  cv[,(c('tot','cv')):=list(round(tot,2),round(cv,5))] 

  setorder(cv, strato,cod_variable) 

     

} 

filename=paste(tempdir,"cv_pps.csv",sep="/") 

write.table(x = cv, file = filename,quote = F,sep = ";",na = "",row.names = F )  

 

Key references 

Key references to the multivariate allocation method: 

o Buglielli, T., De Vitiis, C. and Barcaroli, G. (2013) MAUSS-R - Multivariate Allocation of Units in 
Sampling Surveys. User and Methodological Manual (version 1.1). ISTAT, Italy.  

o Bethel J. (1989) Sample Allocation in Multivariate Surveys. Survey Methodology 15, 47-57. 
o Chromy J. (1987) Design Optimization with Multiple Objectives. Proceedings of the Survey 

Research Methods Section, American Statistical Association, pp.194-199. 

Key references to the Code for sample selection coordinated over time for longitudinal surveys 

o Ohlsson E. (1995). Coordination of samples using permanent random numbers, In Cox BG, Binder 
DA, Nanjamma Chinnappa B, Christianson A, Colledge MJ, Kott PS (Eds.), Business Survey 
Methods, 153–169. New York: Wiley. 

Key reference to the PPS sampling method (Hanurav-Vijayan): 

o Chaudhuri, A. and Vos, J.W.E. (1988) Unified Theory and Strategies for Survey Sampling. 
Amsterdam: North-Holland. Sections 4.8 and 5.17. 

o MAUSS-R web pages at: https://www.istat.it/en/methods-and-tools/methods-and-it-
tools/design/design-tools/mauss-r#Softwareanddocumentation-2 

  

https://www.istat.it/en/methods-and-tools/methods-and-it-tools/design/design-tools/mauss-r#Softwareanddocumentation-2
https://www.istat.it/en/methods-and-tools/methods-and-it-tools/design/design-tools/mauss-r#Softwareanddocumentation-2
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8.2 Finland 
Application of statistical methods in data collection: Regression estimation in Finnish data collection.  

8.2.1 Introduction 

Here we present the application of regression (and ratio) estimation in the Finnish trawler segment for 
estimating the cost and earnings variables. The trawler fleet consist of 53 vessels in 2017 are divided into 
three fleet segments. We present here the estimation for the TM1824 segment that consists of 13 vessels. 

8.2.2 Data collection and sources  

Economic data collection is based on hierarchical multi-stage survey that combines information from 
different data sources. Main sources are the central control register on commercial fishery (includes fishery 
catch data, fishing vessel register, first hand sales of quota species), and financial statement statistics, statistics 
on business subsidies and employment statistics from Statistic Finland (SF). An additional account surveys 
for trawlers conducted by Natural Resources Institute Finland (Luke). 

Information on catches by species, value of landings by species, effort data and vessel capacity information is 
collected by vessel. This data is collected exhaustively for all vessels. Economic data is collected by fishing 
unit: company or fisherman (including family members). Financial statements data for fishing firms with 
income over a threshold level of around € 11 000 are obtained from the database of Statistics Finland (SF) on 
structural business and financial statement statistics. 

Financial data gives a reliable estimate for profitability of the larger vessels, but the disaggregation of cost 
items does not follow that in regulation. Therefore data on the cost and earnings structure is collected with 
an additional account survey on trawlers every 3 year. 

Luke compares landings statistics against the turnover data from Statistics Finland and from account survey. 
Ratio between turnover and value of landings per company is calculated to spot abnormalities. Due to the 
under-coverage in the structural business and financial statement statistics (compared to target population) 
the segment totals need to be estimated with regression estimation and additional cost structure analysis. 
Coefficients of variation and coverage rates are calculated for each variable and for each vessel segment. 
Regression output results are analyzed to check they are statistically valid. 

8.2.3 Estimation procedures 

Cost and earnings estimates for trawler segments are done by design-based and model assisted regression and 
ratio estimation using SAS.  

1) First, the turnover and total income per segment are estimated with regression using PROC 
SURVEYREG of SAS and using the total value of catch as explanatory (auxiliary) variable. The actual 
syntax used in Finland is quite complex, so for demonstration purposes, more simple code is presented 
as follows:  

title1 'Turnover from catchvalue';  

proc surveyreg data=Table1 total=Totals;  

   strata segment /list;  

   model turnover = catch_value;  

   weight Weight;  

      estimate "Turnover in all classes under Model III"  

                catch_value_1 catch_value_sum_1 

                /e; 

   ods output ParameterEstimates = MyParmEst_turnover;  

run;  

proc print data=MyParmEst_turnover;  

run; 
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title1 'Total income from catchvalue';  

proc surveyreg data=Table1 total=Totals;  

   strata segment /list;  

   model total_income = catch_value;  

   weight Weight;  

      estimate "Total income in all classes under Model III"  

                catch_value_1 catch_value_sum_1 

                /e; 

   ods output ParameterEstimates = MyParmEst_totinc;  

run;   

proc print data=MyParmEst_totinc;  

run; 

2) Next, the total costs are estimated for total population per segments from the turnover as follows:  

title1 'Total costs from turnover';  

proc surveyreg data=Table2 total=Totals2;  

   strata segment /list;  

   model total_costs = turnover;  

   weight Weight;  

      estimate "Total costs in all classes under Model III"  

                turnover_1 turnover_sum_1 

                /e; 

   ods output ParameterEstimates = MyParmEst_totcost;  

run;  

proc print data=MyParmEst_totcost;  

run; 

3) As third step, the average percentage share for each cost item from total costs in each vessels segment is 
calculated. For example, the percentage share for fuel costs is calculated with the following formula:  

Fuelcost_%=(sum of fuel costs in a vessel segment)/(sum of total costs in a vessel segment).  

4) Finally, the cost variables are estimated as ratio estimates from the estimated total costs by multiplying 
the percentage share of each cost item with the total costs for each vessel segment as follows:   

Fuel_costs =Fuelcost_%*Total_Cost 

8.2.4 Results 

The results from the estimation of turnover for TM1824 are presented in Table 8.1. The Coefficient of 
variation for the segment turnover is 123328/4364399=0,028. Similar results for each regression (Turnover, 
Total income, Total costs) and each vessels segment are generated by SAS. 
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Table 8.1. SAS output of regression estimation of turnover for TM1824. 

              

The estimated regression coefficients are presented in Table 8.2. The regression function used in the 
estimation of turnover for TM1824 is also given. 

Table 8.2. SAS output of estimated regression coefficients for Turnover. 

Turnover=-24783.446+ 0.898*value of catch. 

 

  

Total estimate for 
turnover 
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Appendices  

Appendix A: SAS implementation of worked examples 

A.1 SAS SURVEY procedures 

We introduce briefly the basic SAS SURVEY procedures for sample selection from populations and the 
analysis of the drawn sample, and then we present the SAS codes (with selected results) that were used in the 
“Worked example” sections in Chapters 3 to 5 of the main text. The SAS version 9.4 was used in the 
examples. Up-to-date information on survey sampling and analysis features can be found at 
http://support.sas.com/rnd/app/stat/procedures/SurveyAnalysis.html. The SAS 9.4 procedures employed 
for the examples are the following. 

PROC SURVEYSELECT: Sample selection from the sampling frame data set with a variety of equal and 
unequal probability sampling methods involving stratification (STRATA statement) and clustering (CLUSTER 
statement). In stratified sampling, proportional allocation, Neyman allocation and optimal allocation can be 
used. An element weight variable SAMPLINGWEIGHT is included in the output data set. Joint selection 
probabilities can be computed for some sampling designs. The replicated sampling option allows 
independent sampling from the frame by different sampling designs and output the samples to a SAS data 
set. The following basic sample selection techniques (see also Table 3.1) are included: 

Equal probability sampling techniques: 

 Simple random sampling without replacement and with replacement  

 Systematic sampling 

 Bernoulli sampling 

 Balanced bootstrap sampling 

 

Unequal probability sampling techniques: 

 PPS sampling without replacement using the Hanurav-Vijayan algorithm or with the Brewer, Murthy 

or Sampford methods 

 PPS sampling with replacement  

 PPS systematic sampling  

 Sequential PPS sampling with minimum replacement by the Chromy method 

 Poisson PPS sampling 

Up-to-date information on capabilities of PROC SURVEYSELECT can be obtained at: 
https://documentation.sas.com/?docsetId=statug&docsetTarget=statug_surveyselect_syntax01.htm&docset
Version=15.1&locale=en 

PROC SURVEYMEANS: Horvitz-Thompson (expansion) estimation of totals, means, medians and other 
descriptive statistics for populations and pre-defined subpopulations or strata (BY statement) and domains 
(DOMAIN statement). Estimation of ratios and post-stratification are also included. Variances for the estimated 
statistics can be estimated by the linearization or sample re-use methods (balanced repeated replications and 
the jackknife method). In domain estimation, the extra variation because of random domain sample sizes is 
accounted for by the extended domain variables technique (Lehtonen & Veijanen 2009 p. 223). The sampling 
design can be complex involving stratification, clustering, and unequal weighting.The following statistics, 
their standard errors, confidence intervals and coefficients of variation can be computed: 

 Means and totals 

 Proportions  

 Quantiles  

 Geometric means  

 Ratios of two totals or means 

http://support.sas.com/rnd/app/stat/procedures/SurveyAnalysis.html
https://documentation.sas.com/?docsetId=statug&docsetTarget=statug_surveyselect_syntax01.htm&docsetVersion=15.1&locale=en
https://documentation.sas.com/?docsetId=statug&docsetTarget=statug_surveyselect_syntax01.htm&docsetVersion=15.1&locale=en
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Up-to-date information on capabilities of PROC SURVEYMEANS can be obtained at: 
https://documentation.sas.com/?docsetId=statug&docsetTarget=statug_surveymeans_toc.htm&docsetVersi
on=15.1&locale=en 

PROC SURVEYREG: Design-based linear regression analysis, ANOVA and ANCOVA under stratified 
one-stage and multi-stage sampling designs with equal and unequal probability sampling. The estimation of 
totals and means by ratio and regression estimation, post-stratification and calibration methods can be 
performed for the entire survey population and pre-defined sub-populations or strata (BY statement) and 
domains (DOMAIN statement). The aggregate-level auxiliary information is incorporated in regression 
estimation by specifying suitable linear functions (ESTIMATE statement). The sampling design can be complex 
involving stratification, clustering, and unequal weighting. 

Up-to-date information on capabilities of PROC SURVEYREG can be obtained at: 
https://documentation.sas.com/?docsetId=statug&docsetTarget=statug_surveyreg_toc.htm&docsetVersion
=15.1&locale=en 

PROC SURVEYIMPUTE can be used for imputation for item missingness (not used here): 
https://documentation.sas.com/?docsetId=statug&docsetVersion=15.1&docsetTarget=statug_surveyimput
e_overview.htm&locale=en   

https://documentation.sas.com/?docsetId=statug&docsetTarget=statug_surveymeans_toc.htm&docsetVersion=15.1&locale=en
https://documentation.sas.com/?docsetId=statug&docsetTarget=statug_surveymeans_toc.htm&docsetVersion=15.1&locale=en
https://documentation.sas.com/?docsetId=statug&docsetTarget=statug_surveyreg_toc.htm&docsetVersion=15.1&locale=en
https://documentation.sas.com/?docsetId=statug&docsetTarget=statug_surveyreg_toc.htm&docsetVersion=15.1&locale=en
https://documentation.sas.com/?docsetId=statug&docsetVersion=15.1&docsetTarget=statug_surveyimpute_overview.htm&locale=en
https://documentation.sas.com/?docsetId=statug&docsetVersion=15.1&docsetTarget=statug_surveyimpute_overview.htm&locale=en
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A.2 Section 3.3.4: Simple random sampling example 

Selection of a SRSWOR sample with PROC SURVEYSELECT 

* CODE BOX 3.1: SRSWOR sampling from SIMPOP with PROC SURVEYSELECT; 
/* Simple random sampling without replacement (SRSWOR) is requested by the SAS 
option method=srs.  
 
Option seed given by the user specifies the initial seed for random number 
generation in SRSWOR. Here the initial seed is kept constant over the examples (to 
be able to reproduce the samples and estimates). The requested sample size is n=5. 
Sampling weights (inverses of inclusion probabilities) are included automatically in 
the sample data set. 
The drawn SAMPLE1 of n=5 elements in Table 3.7.*/ 
 
proc surveyselect data=pop out=sample1  
sampsize=5 seed=98765 method=srs stats; 
run; 
 
/* NOTE: SAS programming language is not case sensitive (uppercase and lowercase 
code is treated as equivalent)*/ 
 

 

Estimation of population total under SRSWOR_HT strategy with PROC SURVEYMEANS 

 

* CODE BOX 3.2: Estimation of total of CATCH for SAMPLE1 by PROC SURVEYMEANS; 
proc surveymeans data=sample1  
sumwgt nobs sum std cvsum clsum total=100; 
var CATCH; 
weight SamplingWeight; 
run; 
 
/* Estimation results are in Table 3.8 
 
Options for output control: 
sumwgt: sum of weights 
nobs: sample size 
sum: total estimate 
std: standard error for total 
cvsum: coefficient of variation for total 
clsum: 95% confidence limits for total;*/ 
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A.3 Section 4.3.4: Domain estimation example 

* CODE BOX 3.3: Domain estimation of totals of CATCH for domains DOM01=0 and DOM01=1 
of SAMPLE2 of n=20 elements by PROC SURVEYMEANS; 
 
* SCENARIO 1: Estimation under the conditional approach assuming known domain sizes 
N=70 for DOM01=0 and N=30 for DOM01=1 in population; 
 
data domain0; 
set sample2; 
where DOM01=0; 
run; 
 
proc surveymeans data=domain0 nobs sumwgt sum cvsum clsum total=70;  
var CATCH; 
weight SamplingWeight; 
run; 
 
* Computation for DOM01=1 similarly for data set domain1 of n=8 elements and setting 
the option total=30; 
 
* Output for DOM01=0 (Table 3.11 first row); 
 
The SURVEYMEANS Procedure 
 
            Data Summary 
Number of Observations            12 
Sum of Weights                    60 
 
                                          Statistics 
 
                                     Sum of 
Variable  Label             N       Weights           Sum       Std Dev      95% CL for Sum 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
CATCH     CATCH            12     60.000000        419536         48298  313232.887 525838.924 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
 
      Statistics 
 
              Coeff of 
             Variation 
Variable       for Sum 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
CATCH         0.115122 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
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* CODE BOX 3.4: Domain estimation of totals of CATCH for domains DOM01=0 and DOM01=1 
of SAMPLE2 of n=20 elements by PROC SURVEYMEANS; 
 
* SCENARIO 2: Estimation under the conditional approach assuming unknown domain 
sizes in population and by using data set domain0 of n=12 from Code Box 3.3 (NOTE: 
No total= option in SURVEYMEANS call);  
 
proc surveymeans data=domain0 nobs sumwgt sum cvsum clsum;  
var CATCH; 
weight SamplingWeight; run; 
 
* Computation for DOM01=1 similarly for data set domain1 of n=8 elements  
 
* Output for DOM01=0 (Table 3.11 3rd row); 
 
The SURVEYMEANS Procedure 
 
            Data Summary 
 
Number of Observations            12 
Sum of Weights                    60 
 
 
                                          Statistics 
 
                                     Sum of 
Variable  Label             N       Weights           Sum       Std Dev      95% CL for Sum 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
CATCH     CATCH            12     60.000000        419536         53060  302752.639 536319.172 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
 
      Statistics 
 
              Coeff of 
             Variation 
Variable       for Sum 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
CATCH         0.126472 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
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* CODE BOX 3.5: Domain estimation of totals of CATCH for domains DOM01=0 and DOM01=1 
of SAMPLE2 of n=20 elements by PROC SURVEYMEANS; 
 
* SCENARIO 3: Estimation under the unconditional approach using extended domain 
variables for data set sample2 of n=20 (NOTE: Analysis over the entire sample data 
set);  
 
proc surveymeans data=sample2 nobs sumwgt sum cvsum clsum total=100;  
var CATCH; 
domain DOM01; 
weight SamplingWeight; run; 
 
* Output (Table 3.11 last 2 rows); 
 
The SURVEYMEANS Procedure 
 
            Data Summary 
 
Number of Observations            20 
Sum of Weights                   100 
 
                                          Statistics 
 
                                     Sum of 
Variable  Label             N       Weights           Sum       Std Dev      95% CL for Sum 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
CATCH     CATCH            20    100.000000        610603         54439  496661.885 724544.886 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
 
                                   Domain Analysis: DOMAIN 
                                                       Sum of 
  DOMAIN    Variable    Label               N         Weights             Sum         Std Dev 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
       0    CATCH       CATCH              12       60.000000          419536           84344 
       1    CATCH       CATCH               8       40.000000          191067           50990 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
 
                   Domain Analysis: DOMAIN 
                                                     Coeff of 
                                                    Variation 
  DOMAIN    Variable        95% CL for Sum            for Sum 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
       0    CATCH       243002.412 596069.399        0.201041 
       1    CATCH        84343.946 297791.014        0.266870 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
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A.4 Section 3.5.4: PPS sampling example 

Selection of a PPSWOR sample with PROC SURVEYSELECT 

* CODE BOX 3.6: PPSWOR sampling from SIMPOP with PROC SURVEYSELECT; 
/* PPS sampling without replacement (PPSWOR) is requested by the SAS option 
method=pps. The requested sample size is n=5. 
The size variable is given by the size statement.  
 
The drawn SAMPLE3 of n=5 elements in Table 3.13.*/ 
 
proc surveyselect data=simpop out=sample3 sampsize=5 seed=98765 method=pps stats;  
size GT;  
run; 

 

Estimation of population total under PPSWOR_HT strategy with PROC SURVEYMEANS 

 

* CODE BOX 3.7: Estimation with SAMPLE3 under PPSWOR sampling; 
 
proc surveymeans data=sample3 sumwgt nobs sum std cvsum clsum total=100; 
var CATCH; 
weight SamplingWeight; 
run; 
 
* Estimation results are in Table 3.14; 
 
/* NOTE: The only difference in SURVEYMEANS code for estimation under PPSWOR and 
SRSWOR sampling is in the contents of the SAMPLINGWEIGHT variable.*/ 
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A.5 Section 3.6.4: Stratified sampling example 

*CODE BOX 3.8. SAS code for stratified sampling and HT estimation; 
* Sampling: Sort SIMPOP by STR3 and save it as population data set POPS; 
proc sort data=pop out=pops; 
by STR3; run; 
 
*(a) STR_SRSWOR sampling, n=20; 
proc surveyselect data=pops out=sample5(keep=id str3 catch samplesize  

selectionprob samplingweight) 
sampsize=20 seed=98765 method=srs stats; 

strata STR3 / alloc=proportional; * definition of strata and allocation; 
run; 
 
(b) STR_PPSWOR sampling, n=20; 
proc surveyselect data=pops out=sample6(keep=id str3 catch samplesize  

selectionprob samplingweight) 
sampsize=20 seed=98765 method=pps stats; 

strata STR3 / alloc=proportional;  
size GT_DAS; run; 
 
* Estimation; 
* Input strata sizes 𝑁ℎ, ℎ = 1,2,3 in population into data set STRATA; 
data STRATA; 
input STR3 _TOTAL_; 
datalines; 
1 33 
2 33 
3 34 
;  
run; 
 
(a) STR_SRSWOR_HT with SAMPLE5; 
proc surveymeans data=SAMPLE5 sumwgt nobs sum std cvsum clsum total=STRATA; 
var CATCH; 
strata STR3; 
weight SamplingWeight; run; 
 
(b) * STR_PPSWOR_HT with SAMPLE6; 
* Replace SAMPLE5 by SAMPLE6 in (a); 
 
* The samples are in Table 3.17 and estimation results are in Table 3.19; 
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A.6 Section 4.2.3: Ratio and regression estimation examples 

* CODE BOX 4.1 Ratio estimation with SAMPLE7 of n=5 by PROC SURVEYMEANS; 
* For ratio estimation for CATCH total with GT as auxiliary variable we first 
estimate by equation (19) the ratio r=CATCH/GT between HT estimated totals of CATCH 
and GT. We then compute the variance estimate for the ratio estimated total t(RAT) 
by using the variance estimate v(r) of the estimated ratio r and the square of known 
GT total in population; 
 
* The SRSWOR sample SAMPLE7 of n=5 elements is shown in Table 4.2; 
* Estimation results (computed below) are in Table 4.6; 
 
proc surveymeans data=SAMPLE7 ratio total=100; 
ratio CATCH/GT; 
weight SamplingWeight; 
run; 
 
The SURVEYMEANS Procedure 
 
            Data Summary 
 
Number of Observations             5 
Sum of Weights                   100 
 
                  Ratio Analysis 
 
Numerator Denominator        Ratio         Std Err 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
CATCH     GT             20.105147        2.831090 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
 
 

* Variance and standard error estimation of ratio estimated total of CATCH; 
data a; 
t_x=32896.4; * known population total of GT; 
se_r=2.831090; * s.e of ratio r; 
var_r=se_r**2; * variance of ratio r; 
var_t_rat=t_x**2*var_r; variance of ratio estimated CATCH total; 
se=sqrt(var_t_rat); * standard error of ratio estimated total; 
run; 
proc print data=a; run; 
 
* Computed standard error estimate;  
 
Obs      t_x        se_r      var_r       var_t_rat        se 
 
 1     32896.4    2.83109    8.01507    8673694049.2    93132.67 
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* CODE BOX 4.2 Ratio estimation with SAMPLE7 of n=5 by PROC SURVEYREG; 
* Ratio estimation for CATCH total with GT as auxiliary variable is executed as a 
special case of regression estimation by fitting a linear model without an intercept 
term (option noint) and using the estimate statement to supply the GT total;  
 
* Estimation results are in Table 4.7; 
 
proc surveyreg data=SAMPLE7 total=100; 
model CATCH=GT / solution noint; 
weight SamplingWeight; 
estimate "CATCH total" GT 32896.4 / E; run; 
 
* Output; 
 
The SURVEYREG Procedure 
Regression Analysis for Dependent Variable CATCH 
 
            Data Summary 
Number of Observations             5 
Sum of Weights             100.00000 
Weighted Mean of CATCH        7225.4 
Weighted Sum of CATCH       722538.8 
 
 
      Fit Statistics 
R-square            0.9297 
 
             Estimated Regression Coefficients 
 
                             Standard 
Parameter      Estimate         Error    t Value    Pr > |t| 
GT           20.6761657    2.72832884       7.58      0.0016 
 
    Estimate 
  Coefficients 
 
Effect      Row1 
GT         32896 
 
Estimate 
 
                           Standard 
Label          Estimate       Error       DF    t Value    Pr > |t| 
 
Catch total      680171       89752        4       7.58      0.0016 
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 CODE BOX 4.3 Regression estimation with SAMPLE7 of n=5 by PROC SURVEYREG; 
* Regression estimation for CATCH total with GT as auxiliary variable is executed by 
fitting a linear regression model (24) for SAMPLE7 and using the estimate statement 
to supply the INTERCEPT total (=population size) and the GT total; 
 
* Estimation results are in Table 4.8; 
 
proc surveyreg data=SAMPLE7 total=100; 
model CATCH=GT / solution; 
weight SamplingWeight; 
estimate "CATCH total" INTERCEPT 100 GT 32896.4 / CL E; 
run; 
 
* Output; 
 
The SURVEYREG Procedure 
 
Regression Analysis for Dependent Variable CATCH 
 
            Data Summary 
Number of Observations             5 
Sum of Weights             100.00000 
Weighted Mean of CATCH        7225.4 
Weighted Sum of CATCH       722538.8 
 
      Fit Statistics 
R-square            0.6701 
 
             Estimated Regression Coefficients 
                             Standard 
Parameter      Estimate         Error    t Value    Pr > |t| 
 
Intercept    -6238.6791    2363.59006      -2.64      0.0576 
GT              37.4647       8.53363       4.39      0.0118 
 
     Estimate 
   Coefficients 
 
Effect         Row1 
 
Intercept       100 
GT            32896 
 
Estimate 
 
                         Standard 
Label         Estimate      Error      DF   t Value   Pr > |t|    Alpha      Lower      Upper 
CATCH total     608586      78985       4      7.71     0.0015     0.05     389288     827884 
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A.7 Section 4.3.3: Post-stratification example 

* CODE BOX 4.4 Post-stratification with SAMPLE9 of n=20 by PROC SURVEYMEANS; 
* The post-stratification variable POST2 is formed from variable DOM01 by changing 
the class codes (if DOM01=0 then POST2=1, if DOM01=1 then POST2=2); 
* Post-stratification is based on equation (29) and is executed with PROC 
SURVEYMEANS by using the POSTSTRATA statement; 
 
* Estimation results are in Table 4.14; 
 
* Defining the distribution of POST2 in population; 
data FREQ; 
input POST2 _PSTOTAL_; 
datalines; 
1 70 
2 30 
; run; 
 
proc surveymeans data=SAMPLE9 nobs sum cvsum sumwgt clsum total=100; 
var CATCH;  
poststrata POST2 / pstotal=FREQ outpswgt=PSWGT; 
weight SamplingWeight;run; 
 
* Output; 
 
The SURVEYMEANS Procedure 
 
            Data Summary 
Number of Poststrata               2 
Number of Observations            20 
Sum of Weights                   100 
 
                                          Statistics 
 
                                     Sum of 
Variable  Label             N       Weights           Sum       Std Dev      95% CL for Sum 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
CATCH     CATCH            20    100.000000        632759         55889  515782.798 749735.535 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
 
              Coeff of 
             Variation 
Variable       for Sum 
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
CATCH         0.088325 
Ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ 
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A.8 Section 5.5: Nonresponse adjustment example 

* CODE BOX 5.1 Adjustment for non-response with SAMPLE9 of n=20 by post-
stratification and regression estimation; 
 
* Estimation results are in Table 5.2; 
 
* 1) Post-stratification with PROC SURVEYMEANS; 
* Post-stratification variable POST5 is formed from variable GT by dividing its 
values into 5 equally-sized classes; 
 
data FREQ; 
input POST5 _PSTOTAL_ ; 
datalines; 
1 20 
2 20 
3 21 
4 19 
5 20 
; 
run; 
 
proc surveymeans data=SAMPLE9 sum total=100; 
var CATCH;  
poststrata POST5 / pstotal=FREQ outpswgt=PSWGT; 
weight SamplingWeight; 
run; 
 
* 2) Regression estimation by PROC SURVEYREG; 
* The original continuous variable GT is used as the auxiliary variable in the 
linear regression model in regression estimation of CATCH total with the ESTIMATE 
statement; 
 
proc surveyreg data=SAMPLE9 total=100; 
model CATCH=GT / solution ; 
weight SamplingWeight; 
estimate "CATCH total" INTERCEPT 100 GT 32896.4 / cl e; 
run; 
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Appendix B: R-implementation of worked examples 
Most of the analyses in the “Worked example” -sections of Chapters 3-5 in the main text were also 
implemented in the R environment (R Core Team 2018, version 3.4.4). The main workhorses were R 

packages sampling (Tillé and Matei 2016) and survey (Lumley 2019). Their use is described briefly in the 
beginning of this Appendix. Those descriptions are followed by vignettes of the worked examples. The code 
of the vignettes is available online at www.zzz.zzz. 

The explanation of the code in the vignettes is very brief, and gets briefer towards the end. The main 
objective of the comments is to point out the corresponding parts of the main text, where the examples are 
discussed in more detail. Sometimes same operations are coded differently in different examples in order to 
illustrate different ways of doing things in R, that might be most convenient in different situations. Some 
code used to print the results was not included in the vignettes, but everything is available in the online R 
codes. 

B1 sampling: R functions for sample selection 

Package sampling is arguably the most extensive collection of R functions for implementing various 

sampling designs. It also contains functions for estimation and calibration, but survey package was chosen 
for those tasks because of its easier use. 

Simple random sampling is obtained with R base function sample, but all other sampling designs are easier 

to implement with tailored sampling functions. In the examples below, we used functions UPsystematic, 

UPtille, and strata from sampling package to implement systematic, PPS, and stratified designs, 
respectively.  

The first two functions, UPsystematic and UPtille, require only one argument, vector pik whose 

length is equal to the population size N and elements equal to the desired inclusion probabilities. For equal 

probability sampling, set pik=rep(n/N, N), where n is the sample size. They return a binary vector of 

length N with value 1 indicating inclusion in the sample and 0 exclusion. 

Use of function strata is a bit more complicated. It takes as its first argument a data frame data 

containing one row corresponding to each of the N elements in the sampling frame, and as second argument 

stratanames name(s) of the categorical variable(s) in data that are used for stratification. Formally, they 
can be numeric, character, or factors, but they should naturally contain several replications of each value. 

data must be sorted in ascending order by the columns given in the stratanames argument before 

applying the function. The third required argument of strata, size, is a vector that gives the stratum 

sample sizes in the order, in which the strata are given in data. The available sampling designs within strata, 

optional argument method,  are “srswor” (the default), “srswr”, “poisson”, and “systematic”. 
The last two allow for unequal probability sampling within strata, in which case one further argument is 

required: pik , the inclusion probabilities or, more conveniently, a vector of values such that the inclusion 
probabilities are proportional to them within strata. Typically this would be one (auxiliary variable) column of 

data. 

Differently from the other sample selection functions in package sampling, strata returns the indices 

(rather than indicators) of the frame elements chosen to the sample (column ID_unit in the output data 

frame, the values corresponding to row numbers in input data frame data). The output data frame also 
contains other information, most significantly the computed inclusion probabilities for the sampled elements 

(column Prob). 

For all sample selection functions in package sampling, but especially for strata, getdata is a 
recommendable convenience function for extracting the measurements of the sampled units from the 
population data. 

http://www.zzz.zzz/
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B2 survey: R functions for design-based estimation 

Package survey offers a unified approach for implementing a wide collection of different estimation 
strategies to complex survey samples. The analysis always starts by specifying the sampling design through 

function svydesign. Its most important arguments are 

ids: identification of clusters; for element sampling designs, give ids=~1; this is a required argument 

probs: inclusion probabilities for unequal probability sampling; not necessary for equal probability sampling; 

argument weights is an alternative 

strata: specification of stratifying variable(s) in data, if any 

fpc: finite population correction; most convenient to specify by giving a vector of population (stratum) sizes; 
see the examples 

data: data frame to look up variables in the other arguments (the sample) 

The estimator of the design variance is also essentially specified in the call of svydesign (arguments pps 

and variance). The default is to use the with-replacement approximation (formula 13 in the main text) for 
PPS sampling. 

In simpler strategies, where auxiliary information is not utilized in the estimation phase, the next step is to 

call one of the estimation functions in package survey. In the examples, we use exclusively function 

svytotal to estimate the population total, but a whole bunch of other functions is available for other needs 

(see vignette(’survey’), for examples). Typically these functions only need the specification of the 

design (obtained with svydesign, or its extensions discussed below) and target variable(s). 

Finally, the estimate, its standard error, confidence interval, and coefficient of variation can be extracted from 

the object returned by svytotal or its relatives using functions print, coef, SE, confint, and cv as 
illustrated in the examples. 

Domain estimation is obtained with function svyby taking svytotal or a relative as one of its arguments. 
This is illustrated in the end of the simple random sampling example. 

Model-assisted estimates are obtained with two further steps after the call of svydesign. First, either 

svyratio (ratio estimation) or svyglm (regression estimation) is called to fit the model, and then their 

predict method returns the population estimates. 

Function calibrate, also illustrated in the ratio and regression estimation examples, produces an extended 

design object by reweighting and adding information to an object returned by svydesign. After that, 

functions like svytotal can be called with the design specified by calibrate in the same way as with the 

design returned by svydesign. Function postStratify works in a similar manner (see the post-
stratification example). 

B3 Section 3.3.4: Simple random sampling example 

B3.1 Preliminaries 

We use the population of active vessels in SIMPOP. R code in preliminaries.r includes reading 

SIMPOP data from the Excel file. 

source('preliminaries.r') 
library(survey) 
pop <- subset(SIMPOP, ACTIVITY == 1) 
N <- nrow(pop) 
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B3.2 Sample selection 

SRSWOR samples can be selected with base R function sample. Given a vector of unique frame element 

id’s and desired sample size as the first two arguments, sample returns the vector of n id’s included in the 
sample. 

n <- 5 
s1 <- subset(pop, ID %in% sample(pop$ID, n), select=c(ID, CATCH)) 

 Obs ID    CATCH 
   1 20 4158.350 
   2 33 3871.413 
   3 50 7179.005 
   4 69 8709.466 
   5 77 6314.279 

We demonstrate estimation using the sample of 5 vessels listed in Table 3.7. rather than the sample drawn 
above. 

n <- 5 
SAMPLE1 <- subset(pop, ID %in% c(1,44,49,55,93)) 
SAMPLE1$SamplingWeight <- N/n 

 Obs ID     CATCH SamplingWeight 
   1  1  3541.440             20 
   2 44  4421.918             20 
   3 49 11355.973             20 
   4 55  6865.416             20 
   5 93  9942.192             20 
 Sum    36126.939            100 

B3.3 Estimation 

To obtain HT estimator for CATCH total, we first specify the sampling design using function svydesign 

and then compute the estimator and its standard error using function svytotal, both from package 

survey. 

des <- svydesign( 
  ids=~1, 
  fpc=rep(N, n), 
  data=SAMPLE1) 
res <- svytotal(~CATCH, des) 

       total     SE 
CATCH 722539 147823 

Package survey also contains a specific method for generic R function confint to compute an 

appropriate confidence interval from the svystat object returned by svytotal, as well as, function cv to 
compute the coefficient of variation (c.f. Table 3.8). 

confint(res,df=degf(des)) 

         2.5 %  97.5 % 
CATCH 312117.2 1132960 

cv(res) 

          CATCH 
CATCH 0.2045879 

20 vessels included in the larger SAMPLE2 of Section 3.3.5 are listed in Table 4.12. Results of Table 3.9 are 
thus replicated as follows. 
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n <- 20 
SAMPLE2.Obs.ID <- data.frame( 
  Obs=1:n, 
  ID=c(1, 9, 29, 41, 47, 56, 63, 68, 69, 71,78, 94, 7, 20, 22, 24, 34, 37, 51
, 79) 
) 
SAMPLE2 <- merge(SAMPLE2.Obs.ID, pop) 
SAMPLE2$SamplingWeight <- N/n 
des <- svydesign( 
  ids=~1, 
  fpc=rep(N, n), 
  data=SAMPLE2) 
res <- svytotal(~CATCH, des) 

The following numbers are obtained from res with extractor functions coef (the estimate), SE (standard 

error), confint, and cv 

  Total  s.e. lower 95% CL upper 95% CL       cv 
 610603 54439     496661.9     724544.9 0.089156 

B3.4 Estimation for domains 

SAMPLE2 is also used to demonstrate domain estimation. 

Nd <- as.numeric(table(pop$DOM01)) # population size of domains 
nd <- as.numeric(table(SAMPLE2$DOM01)) # sample size of domains 
print(data.frame( 
  Domain = sort((unique(pop$DOM01))), 
  Sample = nd, 
  Population = Nd 
), row.names=FALSE) 

 Domain Sample Population 
      0     12         70 
      1      8         30 

The unconditional analysis (Table 3.11, Scenario 3) is obtained with survey function svyby: 

res_ucond <- svyby(~CATCH,~DOM01,des,svytotal,vartype=c('se','ci','cv')) 
print(res_ucond, row.names=FALSE) 

 DOM01    CATCH       se      ci_l     ci_u        cv 
     0 419535.9 84343.75 254225.20 584846.6 0.2010406 
     1 191067.5 50990.11  91128.69 291006.3 0.2668697 

Confidence intervals produced directly by svyby are based on the normal distribution. In order to obtain 
confidence intervals based on the t-distribution (which is more appropriate for small samples), we need a 

separate call to confint: 

res_ucond[,c('ci_l','ci_u')] <- confint(res_ucond, df=degf(des)) 

Scenario 2. Unconditional approach 

 Domain  Total  s.e. lower 95% CL upper 95% CL       cv 
      0 419536 84344    243002.41     596069.4 0.201041 
      1 191067 50990     84343.95     297791.0 0.266870 
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B4 Section 3.4.4: Systematic sampling example 

B4.1 Preliminaries 

We use the population of active vessels in SIMPOP and sort it by GT 

source('read_population.r') 
library(sampling) 
library(survey) 
pop <- subset(SIMPOP, ACTIVITY == 1) 
N <- nrow(pop) 
pop <- pop[order(pop$GT),c('ID','CATCH','GT'),] 
pop$newID <- 1:N # indicating the position in the ordered population 

First ten vessels in the sorted population 

 ID    CATCH    GT newID 
  9 2752.963 210.6     1 
  7 2642.640 218.4     2 
 13 3453.840 221.4     3 
 22 3538.136 229.6     4 
 24 4962.480 232.0     5 
 11 5458.752 234.0     6 
 10 5529.550 244.4     7 
  4 5055.050 252.5     8 
 31 6538.224 255.2     9 
  6 6481.075 257.4    10 

B4.2 Sample selection 

Function UPsystematic in package sampling can also do unequal probability systematic sampling with a 
vector of inclusion probabilities given as the first argument. Equal probability systematic sampling is, of 

course, obtained by giving equal inclusion probabilities. UPsystematic returns a vector of sample inclusion 
indicators 1 (included in the sample) or 0 (excluded). 

n <- 20 
s <- subset(pop,  
  UPsystematic(rep(n/N,N))==1, 
  select=c('newID','CATCH','GT')) 

First six vessels in the systematic sample 

 newID    CATCH    GT 
     5 4962.480 232.0 
    10 6481.075 257.4 
    15 5115.130 269.7 
    20 8402.750 275.5 
    25 3541.440 280.0 
    30 2776.712 286.2 

B4.3 Estimation 

HT estimator for CATCH total from equal probability systematic sample is calculated exactly as for 
SRSWOR (Section 3.3.5). The standard error estimate is approximate as discussed in Sections 3.4.3 - 3.4.5 of 
the main text. 

des <- svydesign( 
  ids=~1, 
  fpc=rep(N, n), 
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  data=s) 
svytotal(~CATCH, des) 

       total    SE 
CATCH 647994 35765 

Demonstration of more appropriate estimators of standard error for systematic sampling is beyond the scope 
of these guidelines. 

B5 Section 3.5.4 PPS sampling example 

B5.1 Preliminaries 

We use the population of active vessels in SIMPOP. 

source('preliminaries.r') 
library(sampling) 
library(survey) 
pop <- subset(SIMPOP, ACTIVITY == 1) 
N <- nrow(pop) 

B5.2 Sample selection 

Although base R function sample allows argument prob (“a vector of probability weights for obtaining the 
elements of the vector being sampled”), it does not in general produce a PPS sample with inclusion 

probabilities equal to these probability weights. Package sampling contains several functions for proper 

PPS sampling, UPtille among others. 

Function UPtille takes as its first argument a vector of desired inclusion probabilities - here we make them 
proportional to size variable GT - and returns a vector of sample inclusion indicators 1 (included in the 
sample) or 0 (excluded). 

n <- 5 
pop$pik <- inclusionprobabilities(pop$GT,n) 
s3 <- pop[UPtille(pop$pik)==1,] 
s3$SamplingWeight <- 1/s3$pik 

 Obs ID     CATCH    GT                pik SamplingWeight 
   1 13   3453.84 221.4 0.0336510986004548       29.71671 
   2 18   3052.56   322 0.0489415255164699       20.43255 
   3 32 5565.7728 345.1 0.0524525479991731       19.06485 
   4 55  6865.416   408 0.0620128646295643       16.12569 
   5 71 4031.7084 370.8 0.0563587505015746       17.74347 
 Sum                                            103.08327 

We demonstrate estimation using the sample of 5 vessels listed in Table 3.13. rather than the sample drawn 
above. 

n <- 5 
SAMPLE3.Obs.ID <- data.frame( 
  Obs=1:n, 
  ID=c(65, 89, 27, 53, 94) 
) 
SAMPLE3 <- merge(SAMPLE3.Obs.ID, pop) 
SAMPLE3$SamplingWeight <- 1/SAMPLE3$pik 
SAMPLE3 <- SAMPLE3[order(SAMPLE3$Obs),] 

 Obs ID      CATCH    GT SamplingWeight 
   1 65    3799.95   329       19.99781 
   2 89  6845.8104 343.2       19.17040 
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   3 27   6087.564 345.1       19.06485 
   4 53  7601.8734 376.2       17.48878 
   5 94 10615.9872 436.8       15.06245 
 Sum                           90.78430 

B5.3 Estimation 

To obtain HT estimator for CATCH total, we first specify the sampling design using function svydesign 

and then compute the estimator and its quality indicators using function svytotal and extractor functions 

coef (the estimated total), SE (standard error), confint (confidence intervals), and cv (coefficient of 

variation); cf. Table 3.14 in the main text. All these functions (or their methods for svystat objects 

produced by svytotal) are from package survey. 

des <- svydesign( 
  ids=~1, 
  fpc=rep(N, n), 
  weights=~SamplingWeight, 
  data=SAMPLE3 
) 
res <- svytotal(~CATCH, des) 

  Total  s.e. lower 95% CL upper 95% CL       cv 
 616136 67055     429961.9     802310.9 0.108831 

B6 Section 3.6.4 Stratified sampling example 

B6.1 Preliminaries 

We use the population of active vessels in SIMPOP and divide it to three nearly equal-sized strata (new 

variable STR3) according to the values of variable GT. For stratified sampling function strata in package 

sampling, the population must be sorted in ascending order by the stratifying variable. Within strata, we 
order by ID. 

source('preliminaries.r') 
library(sampling) 
library(survey) 
pop <- subset(SIMPOP, ACTIVITY == 1) 
N <- nrow(pop) 
pop$STR3 <- as.numeric(cut_number(pop$GT, 3, right=FALSE)) # the last argumen
t was needed to make the same division as in the main text 
pop <- pop[order(pop$STR3, pop$ID),] 
( Ns <- table(pop$STR3) ) # population sizes of strata 

 
 1  2  3  
33 33 34  

B6.2 Sample selection 

The required arguments to sampling function strata are the data frame containing the population, name 
of the stratifying variable in that data frame, and a vector of sample sizes with length equal to the number of 
unique values of the stratifying variable and with order corresponding to the order of the strata in the sorted 

population (see above). "srswor" is the default method, but it was included in the call to avoid unnecessary 
messages in the printed output. 

strata adds the inclusion probabilities as variable Prob and function getdata offers a safe way to 

combine the actual data to the frame element indicators returned by strata. 
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s5 <- getdata(pop, sampling::strata(pop, "STR3", c(6, 7, 7), method="srswor", 
description=TRUE)) 

Stratum 1  
 
Population total and number of selected units: 33 6  
Stratum 2  
 
Population total and number of selected units: 33 7  
Stratum 3  
 
Population total and number of selected units: 34 7  
Number of strata  3  
Total number of selected units 20  

s5$SamplingWeight <- 1/s5$Prob 

We obtain a different sample from that in Table 3.17(a), but the numbers of sampled vessels by strata are the 
same, as well as, the resulting sampling weights. 

 Obs  ID STR3    GT      CATCH              Prob SamplingWeight 
   1  11    1   234   5458.752 0.181818181818182       5.500000 
   2  17    1 286.2  2776.7124 0.181818181818182       5.500000 
   3  33    1 263.9   3871.413 0.181818181818182       5.500000 
   4  41    1   282     3651.9 0.181818181818182       5.500000 
   5  42    1 291.4   8811.936 0.181818181818182       5.500000 
   6  54    1 277.2  3009.8376 0.181818181818182       5.500000 
   7   5    2   312   4687.176 0.212121212121212       4.714286 
   8  16    2 310.5   4160.079 0.212121212121212       4.714286 
   9  20    2 305.2    4158.35 0.212121212121212       4.714286 
  10  27    2 345.1   6087.564 0.212121212121212       4.714286 
  11  51    2 320.1   6638.874 0.212121212121212       4.714286 
  12  69    2 316.8  8709.4656 0.212121212121212       4.714286 
  13 100    2   336   3958.752 0.212121212121212       4.714286 
  14  60    3   378   8551.872 0.205882352941176       4.857143 
  15  67    3   399   7160.055 0.205882352941176       4.857143 
  16  70    3 417.6   8218.368 0.205882352941176       4.857143 
  17  73    3 377.4  8405.4528 0.205882352941176       4.857143 
  18  77    3 377.4  6314.2794 0.205882352941176       4.857143 
  19  88    3   418     8025.6 0.205882352941176       4.857143 
  20  94    3 436.8 10615.9872 0.205882352941176       4.857143 
 Sum                                                 100.000000 

Function strata can also produce a stratified PPSWOR sample (as in Table 3.17(b)). However, for fixed 
stratum sample sizes, only the systematic sampling option is available. Other alternatives would be the 

balanced sampling method implemented as function samplecube in package sampling or separate PPS 
samples (Section 3.5) for each stratum. 

s6 <- getdata(pop, sampling::strata(pop, "STR3", c(6, 7, 7), method="systemat
ic", pik=pop$GT_DAS)) 
s6$SamplingWeight <- 1/s6$Prob 

 Obs ID STR3   GT_DAS     CATCH              Prob SamplingWeight 
   1  6    1  59459.4 6481.0746 0.220962529577015       4.525654 
   2 13    1    44280   3453.84 0.164552969079241       6.077071 
   3 24    1    43152   4962.48 0.160361104826274       6.235926 
   4 35    1    53508  6046.404 0.198845986212557       5.029018 
   5 42    1    69936  8811.936 0.259895583683961       3.847699 
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   6 62    1    48720   5797.68 0.181052860287729       5.523249 
   7  2    2    64310   6559.62 0.242821312113227       4.118255 
   8 18    2    38640   3052.56 0.145896680143914       6.854166 
   9 30    2  64365.5  7208.936 0.243030868680204       4.114704 
  10 48    2  48470.4 6107.2704 0.183014245477421       5.464056 
  11 56    2    78302  6185.858 0.295652221755402       3.382352 
  12 69    2  75081.6 8709.4656 0.283492654759143       3.527428 
  13 80    2    61420   6879.04  0.23190926745443       4.312031 
  14 55    3    86904  6865.416 0.236646798794281       4.225707 
  15 63    3    83496 10270.008 0.227366532174898       4.398185 
  16 73    3  65667.6 8405.4528 0.178818320497369       5.592268 
  17 82    3  76612.2  9959.586 0.208621373913597       4.793373 
  18 88    3    83600    8025.6 0.227649732799433       4.392713 
  19 93    3 103564.5  9942.192 0.282014721919938       3.545914 
  20 99    3    62560   4879.68 0.170356067989623       5.870058 
 Sum                                                   95.829826 

Rather than using the samples drawn above, estimation from stratified samples is demonstrated using the 

samples listed in the main text (Table 3.17). While strata computed the inclusion probabilities for us, in 
this case we need to do it by hand. 

n <- 20 
SAMPLE5.Obs.ID <- data.frame( 
  Obs=1:n, 
  ID=c(1, 22, 23, 25, 42, 44, 12, 15, 30, 36, 46, 52, 75, 55, 57, 67, 82, 90, 
91, 94) 
) 
SAMPLE5 <- merge(SAMPLE5.Obs.ID, pop) 
w <- data.frame(STR3=1:3, Prob=c(6, 7, 7)/c(33, 33, 34)) 
w$SamplingWeight <- 1/w$Prob 
SAMPLE5 <- merge(SAMPLE5, w) 
SAMPLE5 <- SAMPLE5[order(SAMPLE5$Obs),] 

 Obs ID STR3      CATCH              Prob SamplingWeight 
   1  1    1    3541.44 0.181818181818182       5.500000 
   2 22    1   3538.136 0.181818181818182       5.500000 
   3 23    1    8402.75 0.181818181818182       5.500000 
   4 25    1   4978.662 0.181818181818182       5.500000 
   5 42    1   8811.936 0.181818181818182       5.500000 
   6 44    1  4421.9175 0.181818181818182       5.500000 
   7 12    2   8644.482 0.212121212121212       4.714286 
   8 15    2  3786.0615 0.212121212121212       4.714286 
   9 30    2   7208.936 0.212121212121212       4.714286 
  10 36    2   5855.208 0.212121212121212       4.714286 
  11 46    2   8100.048 0.212121212121212       4.714286 
  12 52    2  4888.3428 0.212121212121212       4.714286 
  13 75    2  9652.4416 0.212121212121212       4.714286 
  14 55    3   6865.416 0.205882352941176       4.857143 
  15 57    3  6364.0962 0.205882352941176       4.857143 
  16 67    3   7160.055 0.205882352941176       4.857143 
  17 82    3   9959.586 0.205882352941176       4.857143 
  18 90    3    8803.08 0.205882352941176       4.857143 
  19 91    3  7823.1153 0.205882352941176       4.857143 
  20 94    3 10615.9872 0.205882352941176       4.857143 
 Sum                                          100.000000 
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n <- 20 
SAMPLE6.Obs.ID <- data.frame( 
  Obs=1:n, 
  ID=c(44, 41, 35, 11, 38, 37, 20, 48, 80, 12, 69, 56, 50, 58, 79, 43, 61, 57
, 91, 81) 
) 
SAMPLE6 <- merge(SAMPLE6.Obs.ID, pop) 
# Compute inclusion probabilities proportional to GT_DAS by strata 
# with stratum sample sizes 6, 7, 7 
str_stats <- aggregate(GT_DAS~STR3, pop, sum) 
str_stats <- within(str_stats,{ 
    n <- c(6, 7, 7); 
    f <- n/GT_DAS # Here GT_DAS is the stratum sum, and inclusion probabiliti
es for population/sample elements thus obtained as f * GT_DAS 
}) 
SAMPLE6 <- merge(SAMPLE6, subset(str_stats, select=c(STR3, f))) 
SAMPLE6 <- within(SAMPLE6,{ 
    Prob <- f*GT_DAS; 
    SamplingWeight <- 1/Prob 
}) 
SAMPLE6 <- SAMPLE6[order(SAMPLE6$Obs),] 

 Obs ID STR3     CATCH   GT_DAS              Prob SamplingWeight 
   1 44    1 4421.9175  46546.5 0.172975717598168       5.781158 
   2 41    1    3651.9    52170 0.193873721699729       5.157997 
   3 35    1  6046.404    53508 0.198845986212557       5.029018 
   4 11    1  5458.752    56862  0.21131009322005       4.732382 
   5 38    1   6288.66    64170 0.238468022263209       4.193434 
   6 37    1    6682.5    67500 0.250842940669575       3.986558 
   7 20    2   4158.35    38150 0.144046541084118       6.942201 
   8 48    2 6107.2704  48470.4 0.183014245477421       5.464056 
   9 80    2   6879.04    61420  0.23190926745443       4.312031 
  10 12    2  8644.482    68607 0.259045898929438       3.860320 
  11 69    2 8709.4656  75081.6 0.283492654759143       3.527428 
  12 56    2  6185.858    78302 0.295652221755402       3.382352 
  13 50    2 7179.0048  83476.8 0.315191200544448       3.172677 
  14 58    3  4519.008    57936 0.157764532529521       6.338560 
  15 79    3  5227.508    68783 0.187301813051954       5.338977 
  16 43    3 6359.2191  71451.9 0.194569449079088       5.139553 
  17 61    3    7173.6    85400 0.232551282070234       4.300127 
  18 57    3 6364.0962  87179.4 0.237396735832714       4.212358 
  19 91    3 7823.1153 101598.9 0.276662230116223       3.614516 
  20 81    3  13391.04   103008 0.280499326270382       3.565071 
 Sum                                                   92.050773 

B6.3 Estimation 

Estimation using package survey proceeds in similar manner as in the earlier examples. We only need to 

provide the strata argument to svydesign and provide stratum-specific fpc (population size). 

# first add to each sample element the population size of its stratum 
# from table Ns created in the Prelimaries section 
SAMPLE5 <- merge(SAMPLE5,  
  data.frame(STR3=names(Ns), N=as.numeric(Ns))) 
# then use those to determine appropriate fpc 
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des <- svydesign( 
  ids = ~1, 
  strata = ~STR3, 
  fpc = ~N, 
  data = SAMPLE5 
) 
res <- svytotal(~CATCH, des) 

Table 3.19(a) STR_SRSWOR 

  Total  s.e. lower 95% CL upper 95% CL      cv 
 691976 41692     604014.1       779937 0.06025 

SAMPLE6 <- merge(SAMPLE6,  
  data.frame(STR3=names(Ns), N=as.numeric(Ns))) 
des <- svydesign( 
  ids = ~1, 
  strata = ~STR3, 
  fpc = ~N, 
  weights=~SamplingWeight, 
  data = SAMPLE6 
) 
res <- svytotal(~CATCH, des) 

Table 3.19(b) STR_PPSWOR 

  Total  s.e. lower 95% CL upper 95% CL       cv 
 576254 22282       529243     623265.3 0.038667 

B7 Section 4.2.3: Ratio and regression estimation examples 

B7.1 Sample selection 

We use SRSWOR samples SAMPLE1 and SAMPLE2 (Section 3.3.5), renamed SAMPLE7 and SAMPLE8 to 
emphasize the assumption that we now have access to auxiliary variables GT, DAS, and DOM01. We also 
assume that the population totals of the auxiliary variables are known. 

SAMPLE7 <- subset(pop,ID %in% c(1,44,49,55,93)) 
n7 <- nrow(SAMPLE7) 
SAMPLE7$SamplingWeight <- N/n7 
GTtot <- sum(pop$GT) 
DAStot <- sum(pop$DAS) 
DOM01tot <- sum(pop$DOM01) 

 Obs ID      CATCH    GT DAS DOM01 SamplingWeight 
   1  1    3541.44   280 136     0             20 
   2 44  4421.9175 282.1 165     1             20 
   3 49 11355.9732 386.1 228     0             20 
   4 55   6865.416   408 213     0             20 
   5 93   9942.192 440.7 235     1             20 
 Sum                                          100 

SAMPLE8 <- subset(pop,  
  ID %in% c( 1, 9, 29, 41, 47, 56, 63, 68, 69, 71,  
            78, 94, 7, 20, 22, 24, 34, 37, 51, 79) 
) 
n8 <- nrow(SAMPLE8) 
SAMPLE8$SamplingWeight <- N/n8 
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B7.2 Ratio estimation 

C.f. Table 4.6; for more information, see the help file of survey function calibrate. 

des7 <- svydesign( 
  ids=~1, 
  fpc=rep(N, n7), 
  data=SAMPLE7) 
( est.ratio <- svyratio(~CATCH, ~GT, des7) ) 

Ratio estimator: svyratio.survey.design2(~CATCH, ~GT, des7) 
Ratios= 
            GT 
CATCH 20.10515 
SEs= 
           GT 
CATCH 2.83109 

predict(est.ratio, total=GTtot) 

$total 
          GT 
CATCH 661387 
 
$se 
            GT 
CATCH 93132.68 

Using calibration: 

des7.calib <- calibrate(des7, ~GT-1, pop=GTtot, variance=1) 
svytotal(~CATCH, des7.calib) 

       total    SE 
CATCH 661387 93133 

B7.3 Regression estimation 

SAMPLE7 with one auxiliary variable GT. For more information, see the help file of survey function 

svyglm. 

( reg.model <- svyglm(CATCH~GT, des7) ) 

Independent Sampling design 
svydesign(ids = ~1, fpc = rep(N, n7), data = SAMPLE7) 
 
Call:  svyglm(formula = CATCH ~ GT, design = des7) 
 
Coefficients: 
(Intercept)           GT   
   -6238.68        37.46   
 
Degrees of Freedom: 4 Total (i.e. Null);  3 Residual 
Null Deviance:      4.6e+07  
Residual Deviance: 15170000     AIC: 94.82 

predict(reg.model, newdata=data.frame(GT=GTtot), total=N) 

    link    SE 
1 608586 68403 
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SAMPLE8 with auxiliary variables GT, DAS, and DOM01. 

des8 <- svydesign( 
  ids=~1, 
  fpc=rep(N, n8), 
  data=SAMPLE8) 
( reg.model <- svyglm(CATCH~GT+DAS+DOM01, des8) ) 

Independent Sampling design 
svydesign(ids = ~1, fpc = rep(N, n8), data = SAMPLE8) 
 
Call:  svyglm(formula = CATCH ~ GT + DAS + DOM01, design = des8) 
 
Coefficients: 
(Intercept)           GT          DAS        DOM01   
   -6329.23        20.55        33.35      -545.37   
 
Degrees of Freedom: 19 Total (i.e. Null);  16 Residual 
Null Deviance:      140800000  
Residual Deviance: 29150000     AIC: 350.6 

predict(reg.model,  
  newdata=data.frame(GT=GTtot, DAS=DAStot, DOM01=DOM01tot),  
  total=N) 

    link    SE 
1 637401 28485 

The estimates are equal to those obtained with SAS SURVEYREG (Tables 4.8 and 4.10), but s.e.’s somewhat 
different. 

B8 Section 4.3.3: Post-stratification example 

B8.1 Sample selection 

We use SRSWOR sample SAMPLE2 (Section 3.3.5), renamed SAMPLE9 to emphasize the assumption that 
we now have access to binary auxiliary variable DOM01. We also assume that its population frequencies 
(domain sizes) are known. 

SAMPLE9 <- subset(pop,  
  ID %in% c( 1, 9, 29, 41, 47, 56, 63, 68, 69, 71,  
            78, 94, 7, 20, 22, 24, 34, 37, 51, 79) 
) 
n9 <- nrow(SAMPLE9) 
SAMPLE9$SamplingWeight <- N/n9 
Nps <- table(pop$DOM01) 
Npop <- data.frame(DOM01=names(Nps), Freq=as.numeric(Nps)) 

B8.2 Estimation 

C.f. Table 4.14. 

des9 <- svydesign( 
  ids=~1, 
  fpc=rep(N, n9), 
  data=SAMPLE9) 
des.ps <- postStratify(des9, ~DOM01, Npop) 
svytotal(~CATCH, des.ps) 
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       total    SE 
CATCH 632759 55889 

B9 Section 5.5. Example on treating nonresponse 

B9.1 Sample selection 

We use SRSWOR sample SAMPLE2 (Section 3.3.5), renamed SAMPLE10 to emphasize the assumption that 
we now have access to continuous auxiliary variable GT and categorical variable POST5 obtained by dividing 
the population to five equally-sized post-strata according to the values of GT. We also assume that the 
population total of GT and population sizes of the post-strata are known. Furthermore, measurements of the 
target variable CATCH are missing for two records. 

pop$POST5 <- as.numeric(cut_number(pop$GT, 5)) 
( GTtot <- sum(pop$GT) ) 

[1] 32896.4 

Nps <- table(pop$POST5) 
( Npop <- data.frame(POST5=names(Nps), Freq=as.numeric(Nps)) ) 

  POST5 Freq 
1     1   20 
2     2   20 
3     3   21 
4     4   19 
5     5   20 

SAMPLE10 <- subset(pop,  
  ID %in% c( 1, 9, 29, 41, 47, 56, 63, 68, 69, 71,  
            78, 94, 7, 20, 22, 24, 34, 37, 51, 79) 
) 
n10 <- nrow(SAMPLE10) 
SAMPLE10$SamplingWeight <- N/n10 
SAMPLE10$CATCH[SAMPLE10$ID %in% c(37, 51)] <- NA 
SAMPLE10$I <- as.numeric(!is.na(SAMPLE10$CATCH)) 
SAMPLE10 <- SAMPLE10[order(SAMPLE10$POST5, SAMPLE10$ID),] 

 Obs ID  I      CATCH    GT POST5 SamplingWeight 
   1  7  1    2642.64 218.4     1              5 
   2  9  1  2752.9632 210.6     1              5 
   3 22  1   3538.136 229.6     1              5 
   4 24  1    4962.48   232     1              5 
   5 29  1  7518.9576 266.8     1              5 
   6 37  0       <NA>   270     1              5 
   7  1  1    3541.44   280     2              5 
   8 20  1    4158.35 305.2     2              5 
   9 41  1     3651.9   282     2              5 
  10 34  1   4363.008   312     3              5 
  11 51  0       <NA> 320.1     3              5 
  12 56  1   6185.858 319.6     3              5 
  13 69  1  8709.4656 316.8     3              5 
  14 78  1   6219.108 321.9     3              5 
  15 47  1  8715.8907 359.7     4              5 
  16 71  1  4031.7084 370.8     4              5 
  17 63  1  10270.008   392     5              5 
  18 68  1 11693.8944 399.6     5              5 



116 

 

  19 79  1   5227.508   407     5              5 
  20 94  1 10615.9872 436.8     5              5 
 Sum    18                                   100 

B9.2 Estimation 

No adjustment for non-response (Table 5.2 b) 

des10 <- svydesign( 
  ids=~1, 
  fpc=rep(N, n10), 
  data=SAMPLE10) 
svytotal(~CATCH, des10, na.rm=TRUE) 

       total    SE 
CATCH 543997 65830 

Post-stratification (Table 5.2 c) 

des.ps <- postStratify(des10, ~POST5, Npop) 
svytotal(~CATCH, des.ps, na.rm=TRUE) 

       total    SE 
CATCH 564206 47830 

Regression estimation (Table 5.2 d) 

reg.model <- svyglm(CATCH~GT, des10) 
predict(reg.model, newdata=data.frame(GT=GTtot), total=N) 

    link    SE 
1 647368 47931 

As in the regression estimation example (Section 4.2.3), the estimates are equal to those obtained with SAS 
SURVEYMEANS and SURVEYREG, but s.e.’s somewhat different. 
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